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Abstract

This paper presents an evaluation of a method for the estimation of the discretization uncertainty
based on a Least Squares version of the Grid Convergence Indexand a recently proposed Validation
procedure in the calculation of the two-dimensional flow of an incompressible fluid over a backward
facing step. Solution Verification studies are performed for three grid sets with the finite-difference
and finite-volume versions of PARNASSOS using the one-equation turbulence model of Spalart &
Allmaras model and the baseline and shear-stress transportvariants of thek−ω two-equation turbu-
lence models, proposed by Menter. The results show that it isdifficult to obtain reliable estimates of
the uncertainty of flow quantities in turbulent flows. With a procedure based on the determination of
the observed order of accuracy, the level of grid refinement and/or solution accuracy required to obtain
reliable estimates of the numerical uncertainty is much finer than what is commonly used nowadays.
The proposed procedure for Validation is clearly more reliable than the popular graphical comparison
of predictions and experiments.

1 Introduction

The significant increase of the use of Computational Fluid Dynamics in engineering applications
leads inevitably to a need to establish the credibility of the numerical results. This goal may be
achieved with Verification and Validation, which comprise three different stages, [1]:

1. Code Verification.

2. Solution/Calculation Verification.

3. Validation.

The first two activities are purely mathematical, whereas the third is a science/engineering activity
that intends to assess the suitability of the mathematical model as a representation of the physical
problem. The 3rd Workshop on CFD uncertainty analysis [2] deals with all threestages, using manu-
factured solutions [3, 4] for Code Verification and the flow over a backward facing step for Solution
Verification and Validation.

Code Verification has been extensively performed in [4, 5, 7, 8] for the finite-difference [9] and
finite-volume [10] 2-D versions of the PARNASSOS flow solver. Therefore, in this paper we focus
on Solution Verification and Validation, using the same solvers.

An updated version of the discretization uncertainty estimation procedure presented in [8] is tested
in three grid sets for the Spalart & Allmaras model [11] and two grid sets for the baseline (BSL) and
shear-stress transport (SST) versions of thek−ω model [12], originally proposed by Wilcox in [13].
The sets range from unreasonably coarse grids (41×41) to grids which are much finer than those used
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for the second edition of the Workshop [8]. The aim is to checkthe performance of the uncertainty
estimation procedure for grids clearly outside the asymptotic range by studying the consistency of the
estimated error bars at different grid levels.

In the finite-difference version of the code, we test first andthird-order discretizations of the con-
vective terms of the turbulence quantities transport equations. Thus the impact of the common choice
of first-order convection in the turbulence models (to prevent nominally positive-definite quantities
from becoming negative) on the accuracy of the solutions. Moreover, it also provides an extra check
for the discretization uncertainty estimation procedure by having solutions of different formal accu-
racy in the same grids.

The forthcoming Validation Procedure proposed by the ASME V&V 20 Committee [14] will be
tried in a simplified form, i.e. with the strong model concept(parameter uncertainty equal to 0) [15].

The paper is organized in the following way: section 2 gives the description of the updated version
of the procedure to estimate the discretization uncertainty; the main properties of the two versions
of the PARNASSOS flow solver are summarized in section 3; the Solution Verification exercise is
presented in section 4 and the Validation exercise in section 5; finally, the main conclusions of this
study are summarized in section 6.

2 Discretization uncertainty estimation

The basis for the estimation of the discretization uncertainty U of the solution of an integral or
local flow quantity on a given grid is the standard Grid Convergence Index (GCI) method [1], which
says

U = Fs|δRE| . (1)

Fs is a safety factor andδRE is the error estimator.
The error estimation is preferably obtained by Richardson extrapolation:

δRE = φi −φo = αhp
i , (2)

whereφi is the numerical solution of any local or integral scalar quantity on a given grid (designated
by the subscripti), φo is the estimated exact solution,α is a constant,hi is a parameter which identifies
the representative grid cell size andp is the observed order of accuracy.

If results on more than three grids are available,φo, α andp are obtained with a least squares root
approach that minimizes the function:

S(φo,α, p) =

√

ng

∑
i=1

(

φi − (φo +αhp
i
)
)2

, (3)

whereng is the number of grids available1. The minimum ofS(φo,α, p) is found by setting its
derivatives with respect toφo, p j and α j equal to zero, [16]. The standard deviation of the fit2,

1If ng = 3, the solution of (3) is equivalent to the solution of (2). Therefore, at least four geometrically similar grids
must be available to have a least squares root solution.

2Obviously, the standard deviation of the fit is zero forng = 3.
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Us, is given by

Us =

√

√

√

√

√

√

ng

∑
i=1

(

φi − (φo +αhp
i )

)2

ng−3
. (4)

The ability to estimate the error with Richardson extrapolation depends on the apparent conver-
gence condition, being one of the following options:

• Monotonic convergence.

• Oscillatory convergence.

• Monotonic divergence.

• Oscillatory divergence.

Having a single grid triplet withh2/h1 = h3/h2, it is not difficult3 to classify the apparent conver-
gence condition from the convergence ratio:

R=
φ2−φ1

φ3−φ2
,

whereφ1 stands for the finest grid solution,φ2 for the medium grid andφ3 for the coarsest grid
solution. As mentioned by Roache, [17], we have:

0 < R< 1 ⇒ Monotonic convergence
−1 < R< 0 ⇒ Oscillatory convergence

R> 1 ⇒ Monotonic divergence
R< −1 ⇒ Oscillatory divergence

When more than three grids are available and the least squaresroot approach is followed, this
classification is not as straightforward, because the data may exhibit scatter, [16]. First, we establish
the apparent order of convergencep from the least squares solution of equation (3). Next, oscillatory
convergence or divergence is identified bynch, the number of times the difference between consecutive
solutions changes sign, i.e.

(

φi+1−φi

)

×
(

φi −φi−1

)

< 0. The apparent convergence condition is then
decided as follows:

1. p > 0 for φ ⇒ Monotonic convergence.

2. p < 0 for φ ⇒ Monotonic divergence.

3. nch ≥ INT(ng/3) ⇒ Oscillatory convergence or divergence.

4. Otherwise⇒ Unknown.

3This does not mean that the classification based on a grid triplet is reliable.
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The present way of determining oscillatory behaviour does not distinguish convergence from di-
vergence. Furthermore, the apparent convergence condition may be unknown if the first three criteria
listed above are not met. In principle, if the code has been verified, i.e. shown to be free of bugs in
the implementation of the numerical model, one would not expect non-convergent situations to occur.
However, for data outside the asymptotic range it is possible that apparent divergence conditions are
obtained as a consequence of too coarse grids. Therefore, only three conditions are relevant for our
estimation procedure:

1. Monotonic convergence.

2. Oscillatory behaviour.

3. Anomalous behaviour.

The only condition which allows an error estimation based onRichardson extrapolation is mono-
tonic convergence. But even then small perturbations in the data may lead to significant changes in the
estimated value ofp, and thus to sometimes unsatsfactory results when the G.C.I.in the least-squares
sense is applied.

In an attempt to overcome this, we have prevously chosen the maximum difference between all
the solutions available,∆M,

∆M = max
(

|φi −φ j |
)

with 1≤ i ≤ ng∧1≤ j ≤ ng . (5)

as an additional parameter in the procedure. Now we introduce two others, viz. error estimators based
on power series expansions with fixed exponents:

δ 12
RE = φi −φo = α1hi +α2h2

i (6)

and
δ 02

RE = φi −φo = λ1h2
i . (7)

δ 12
RE andδ 02

RE are also calculated in the least squares sense and so we will have standard deviations
given by

U12
s =

√

√

√

√

√

√

ng

∑
i=1

(

φi − (φo +α1hi +α2h2
i )

)2

ng−3
(8)

and

U02
s =

√

√

√

√

√

√

ng

∑
i=1

(

φi − (φo +λ1h2
i )

)2

ng−3
(9)

We can summarize our procedure for the estimation of the numerical uncertainty, valid for a
nominally second-order accurate method, as follows:

1. The observed order of accuracy is estimated with the leastsquares root technique to identify
the apparent convergence condition according to the definition given above.
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2. For monotonic convergence:

• For 0.95≤ p < 2.05

Uφ = 1.25(δRE+Us) .

• For 0< p < 0.95

Uφ = min
(

1.25(δRE+Us) ,1.25min(1.6,2.28/p−1.4)
(

δ 12
RE+U12

s

))

.

• For p≥ 2.05

Uφ = max
(

1.25(δRE+Us) ,1.25min(1.6,3p−5.15)
(

δ 02
RE+U02

s

))

.

3. For oscillatory convergence :

Uφ = 3∆M .

4. In other conditions:

Uφ = min
(

3∆M,3
(

δ 12
RE+U12

s

))

.

The change in the safety factor forp < 0.95 andp > 2.05 reflects the decrease of confidence in
the extrapolation. Obviously, the limits are chosen in an ad-hoc way (numerical experimentation in a
limited number of cases). At present, we have selected a continuous linear change of the safety factor
with a maximum value of 2 forp≤ 0.76 or p≥ 2.25.

The apparent divergence condition is included in the “anomalous behaviour” category, which may
be questionable. In smooth flow fields, such apparent condition should only appear in data clearly
outside the asymptotic range. However, our previous experience has shown that in cases where the
scatter is similar to changes between grids we can obtain a misleading classification of “apparent
divergence”. Obviously, we have no guarantee that the approach is conservative for the case of data
clearly outside the asymptotic range.

3 PARNASSOS flow solver

The 2-D versions of PARNASSOS solve the steady, incompressible, Reynolds-averaged Navier
Stokes equations using eddy-viscosity turbulence models.Details of the implementation of the two
versions are given in [9] and [10]. The main properties of thetwo versions are summarized below.

• The finite-difference, FD, version discretizes the continuity and momentum equations written
in Contravariant form, which is a weak conservation form. Thefinite-volume, FV, version
discretizes the strong conservation form of the equations.
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• The FD version computes the momentum balance along the directions of the curvilinear co-
ordinate system, whereas the FV version calculates the momentum balance for its Cartesian
components.

• The FD code has a fully-collocated arrangement with the unknowns and the discretization cen-
tered at the grid nodes. In the FV code unknowns are defined at cell centres.

• Both versions apply quasi-Newton linearization to the convective terms and are at least second
order accurate for all the terms of the continuity and momentum equations. Third-order upwind
discretisation is applied to the convective terms.

• The linear system of equations formed by the discretized continuity and momentum equations
is in both versions solved simultaneously, using GMRES, [18], with a coupled ILU precondi-
tioning.

• Under-relaxation is applied with a quasi time-derivative term.

• The transport equations for the turbulence quantities are discretized with first or third-order
(with our without limiters) upwind schemes.

• The linearization procedure of the production and dissipation terms of the turbulence quantities
follows the standard approach, i.e. production is added to the right-hand side and dissipation to
the main-diagonal.

• The solution of the turbulence quantities transport equations is uncoupled from solving the
continuity and momentum equations.

4 Solution Verification

4.1 Computational domain, flow and boundary conditions

The computational domain of the flow around a backward facingstep is bounded by two walls and
two x constant planes,−4H upstream and 40H downstream of the step, whereH is the step height.
The Reynolds number based on the step height and the velocity of the incoming flow,Ure f , is 5×105.

In the present calculations, we have specified all the required flow quantities at the inlet, with the
exception of the pressure coefficient, using the profiles generated for the Workshop [19]. The pressure
coefficient is extrapolated from the interior of the domain,assuming that its second derivative in the
streamwise direction is zero.

At the walls, the no-slip and impermeability conditions areapplied, which leads toux = uy = 0.
ν̃ andk are set equal to 0 andω is specified at the first two nodes away from the wall using the near
wall solution of theω transport equation given in [13].

In the finite-difference version of the method, the momentumequation in the normal direction is
solved at the wall to obtain the pressure value; in the finite volume version the pressure at the wall
is found from linear extrapolation from the interior of the domain. At the outlet boundary,ux, uy

and the turbulence quantities are linearly extrapolated from the interior of the domain. The pressure
coefficient is set to zero.
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4.2 Calculation details

All the calculations were performed with 15-digits precision and the iterative error was reduced
to machine accuracy. In such conditions, it is logic to assume that the contributions of the round-off
and iterative errors to the numerical uncertainty is negligible compared to the discretization error.

4.3 Grid sets

We have selected two sets of 19 single-block, structured, geometrically similar grids, A and B, to
perform the calculations of the flow over a backward facing step with the finite-difference version of
PARNASSOS. The finite-volume version was used in a third set of16 systematically refined grids,
designated by FV.

Set A Set B FV
Figure 1: Illustration of the three grids sets for the calculation of the flow over a backward facing step.

• Set A is similar to the first grid set proposed for the first edition of the Workshop, [19], contain-
ing non-orthogonal curvilinear grids with the same number of nodes in both directions. At the
walls the grids are orthogonal.

• Set B is the same as the set B used in the first edition of the Workshop, [19], and has straight
lines connecting the bottom and top walls and the same numberof nodes in both directions.

• FV includes non-orthogonal curvilinear grids with the number of nodes in the streamwise di-
rection equal to twice the number of nodes in the normal direction. Unlike sets A and B, the set
FV has the unfavourable feature that the lower (concave) corner of the step does not coincide
with a grid node in all grids.

Sets A and B have coarsest grids of 41×41 nodes and finest grids of 401×401 nodes covering
a grid refinement ratio of 10. For FV, the coarsest grid has 161×81 nodes and the finest 801×401
nodes. The grids in the vicinity of the step are illustrated in figure 1.
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4.4 Testing the discretization estimation procedure

One of the aims of the present study is to test the reliabilityof the uncertainty estimation procedure
even in grids clearly outside the asymptotic range. To this end, we have performed 10 grid refinement
studies with the finite-difference version and the following turbulence models:

• Spalart & Allmaras model [11]:

– Sets A and B with first and third-order discretizations of theconvective terms of thẽν
transport equation.

• BSL k−ω model [12]:

– Sets A and B with first and third-order discretizations of theconvective terms of thek and
ω transport equations.

• SSTk−ω model [12]:

– Sets A and B with third-order discretizations of the convective terms of thek andω trans-
port equations.

In both grid sets, there are 19×19 grid node locations common to all members of the set, therefore
requiring no interpolation to evaluate the convergence properties with the grid refinement. Naturally,
these locations are not identical in both sets. So for set B wehave used local bi-cubic interpolation to
obtain the solution at the fixed locations from set A.

For the two Cartesian velocity components,ux and uy, and pressure coefficient4, C∗
p, we have

computed the following quantities:

• Percentage of locations with estimated discretization uncertainty greater than 10−4 for ux and
10−5 for uy andC∗

p, Nφ .

• For theNφ locations:

– The percentage of locations with apparent monotonic convergence,Ncφ .

– For theNcφ locations:

∗ The mean apparent order of convergence,pmed.

∗ The minimum apparent order of convergence,pmin.

∗ The maximum apparent order of convergence,pmax.

∗ The percentage of locations in four different ranges ofp: p< 0.095, 0.95≤ p< 2.05,
2.05≤ p < 3.05, p > 3.05.

These parameters were estimated for three different levelsof grid refinement:

1. 401×401 grid using the data of the 11 finest grids covering a grid refinement ratio of 2, desig-
nated by Level 1.

4C∗
p = (p− poutlet)/(ρU2

re f) = 1/2Cp
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2. 201×201 grid using the data of 6 grids covering a grid refinement ratio of 2, designated by
Level 2.

3. 101× 101 grid using the data of the 4 coarsest grids covering a gridrefinement ratio of 2.5,
designated by Level 3.
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Figure 2: Percentage of locations with estimated discretization uncertainty of the horizontal velocity
component above 10−4. Calculation of the flow over a backward facing step.

Figure 2 presentsNux for the three levels tested. Expectedly,Nux increases with the grid coars-
ening. However, the minimum value obtained for the Level 1 isstill above 80%. Similar results are
obtained foruy andCp.

The percentage of locations of apparent monotonic convergence is illustrated in figure 3 for the
three mean flow variables. The results are somehow unexpected. There is no clear trend indicating a
reduction ofNc with the coarsening of the grids and in some cases the tendency seems to be exactly the
opposite. Furthermore, from the different options included in the data, only the kind of flow quantity
seems to have a minor influence on the trends observed inNc. Different grid sets, turbulence models
and discretizations of convection in the turbulence modelslead to changes inNc with the coarsening
of the grid selected for the uncertainty estimation.

The mean value of the estimated order of convergence,pmed, at the locations with apparent mono-
tonic convergence is plotted in figure 4. The data confirm the difficulties in the estimation ofp in
turbulent flow calculations. We should expect an increase ofpmed with the change from first to third-
order in the turbulence models convection, but that is not always the case.pmed should be closer to 2
for the finest grids, but there are cases where the differenceto 2 is actually decreasing with the coars-
ening of the grid. The only expected trend observed is thatpmed depends on the selected turbulence
model.

The minimum values ofp are systematically too close to 0 (around 0.1) and the maximum values
of p are always above 5 and in most of the cases 6. In order to give a clear illustration of the difficulties
in thep estimation, figure 5 presents the distribution ofp for ux at the three levels for the discretization
uncertainty estimation.

With very few exceptions, the percentage of locations withp in the expected range (0.95≤ p <
2.05) is always smaller than 50% and in some cases it is close to 20%. There is no tendency of increase
of this percentage with grid refinement. In fact, there are four cases with the largest percentage of grid
nodes in the expected range for the coarsest grids (level 3)!With very few exceptions, the percentage
of locations withp > 3.05 is marginal, but the percentages for thep < 0.95 and 2.05≤ p < 3.05
ranges depend on the turbulence model. The lowest range ofp is most frequent for thek−ω models,
whereas for the Spalart & Allmaras model the other range is dominant.
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Figure 3: Percentage of locations with apparent monotonic convergence. Calculation of the flow over
a backward facing step.

The evaluation of the performance of the proposed procedurefor the estimation of the discretiza-
tion uncertainty is made checking the overlap of the different error bars obtained. The first (and
simplest) check is performed for the same grid refinement study, i.e. for a given grid refinement
study, we have computed the number of locations where the error bars from levels 1, 2 and 3 do not
overlap. The results are plotted in figure 6.

Bearing in mind the grid refinement of the grids included in level 3 (101×101 to 41×41), the
results are not discouraging. Furthermore, if we repeat thesame exercise only for levels 1 and 2
the percentage of failures is always 0. However, we can make more demanding checks, which are
summarized below5:

• Compare the error bars of solutions obtained in the same grid set with first and third-order
convection in the turbulence models using 1, 2 or 3 levels.

• Compare the error bars of solutions obtained in different grid sets with the same discretization
using 1, 2 or 3 levels.

• Compare the error bars from all the solutions using 1, 2, or 3 levels.

5In this case, we have restricted ourselves to the Spalart & Allmaras and BSLk−ω models
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Figure 4: Mean apparent order of convergence at the locations with monotonic convergence. Calcu-
lation of the flow over a backward facing step.

Table 1 presents the number of inconsistent error bars for the mean flow variables. In most cases,
the percentage of failures is clearly above the 5% target. Interesting features in the data are:

• As expected, the percentage of mismatches between the errorbars increases with the grid coars-
ening.

• The turbulence model has a significant influence on the outcome of the exercise:

– The Spalart & Allmaras model leads systematically to a higher percentage of inconsistent
error bars than the BSLk−ω model. We recall that the BSLk−ω results exhibit signifi-
cant percentages of grid nodes withp < 0.5, whereas the Spalart & Allmaras model leads
to values ofp > 2.05.

– For the finest grid level, the performance of the proposed procedure is close to acceptable
(only ux exhibits 6% of inconsistent error bars for the finest grid solution).

• The comparison between solutions in the same grid set with different discretizations of the
convective terms of the turbulence quantities transport equations shows significantly higher
percentages of failures than the comparison of error bars for different grids and the same dis-
cretization.
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Figure 5: Distribution of the apparent order of convergenceat the locations with monotonic conver-
gence. Horizontal velocity component,ux. Calculation of the flow over a backward facing step.

• In most cases, the percentage of “failures” is higher for thefirst-order discretization of con-
vection in the turbulence models than for third-order approximations. In fact, excluding all the
first-order convection solutions, the performance of the uncertainty estimation method is only
poor when the coarsest grids are included. Therefore, the effect of the discretization of the
convective terms of the turbulence quantities transport equation on the convergence properties
of the mean flow quantities is not negligible.

The results of table 1 show that the present procedure is too optimistic for data referring to coarse
grids and first-order convection in the turbulence models. In order to get an idea of how much we
should have to increase the safety factors to satisfy the desired goal of 95% confidence [17], we have
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Figure 6: Percentage of locations with non-overlapping error bars from 3 levels of grid refinement.
Calculation of the flow over a backward facing step.

Grid Conv. TM Spalart & Allmaras BSL k−ω
Sets Disc. Levels ux uy C∗

p ux uy C∗
p

1st 1 14.4 17.8 3.0 1.2 0.5 0.0
A + 1,2 19.1 30.1 21.9 5.9 5.6 6.0

3rd 1,2,3 36.3 42.2 29.9 11.3 13.3 15.1
1st 1 7.2 17.8 38.0 4.0 2.4 3.2

B + 1,2 13.6 24.9 46.4 24.7 19.8 18.9
3rd 1,2,3 17.8 32.1 48.4 42.5 45.5 43.6

A 1 0.4 1.7 0.0 1.2 1.9 0.0
+ 1st 1,2 1.8 7.5 6.6 3.7 5.9 2.6
B 1,2,3 8.1 21.8 13.6 18.3 26.7 22.8
A 1 0.4 0.0 0.3 0.0 0.0 0.0
+ 3rd 1,2 3.0 6.7 2.8 0.6 1.0 0.0
B 1,2,3 21.5 21.7 7.4 8.0 14.9 13.5
A 1st 1 26.9 37.1 46.5 6.0 4.5 4.4
+ + 1,2 33.1 47.6 56.1 33.8 27.6 22.5
B 3rd 1,2,3 49.8 54.1 60.3 59.0 56.8 62.6

Table 1: Percentage of locations with non-overlapping error bars from different grid refinement stud-
ies and grid densities. Calculation of the flow over a backwardfacing step.

repeated the same exercise multiplying the estimated uncertainties by 2.4. This would correspond to
a factor of safety 3 in the G.C.I, which is recommended by Roachefor data outside the asymptotic
range [1]. The results are presented in table 2.

The outcome of the exercise is substantially better than in table 1. With these increased safety
factors, the method almost satisfies the 95 % confidence criterion. The exceptions are the first-order
convection solutions for the Spalart & Allmaras model, where the “standard” safety factors would
have to be multiplied by more than 10 to obtain percentages offailures below 5% for the three mean
flow variables with all the grid levels tested.

In this type of flow calculations, with a single evaluation ofthe observed order of accuracy (even in
the least square sense) it is practically impossible to decide where data enter the asymptotic range. So
our conclusion is that for the backward-facing step flow at hand, and more general for most engineer-
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Grid Conv. TM Spalart & Allmaras BSL k−ω
Sets Disc. Levels ux uy C∗

p ux uy C∗
p

1st 1 0.9 0.5 0.0 0.0 0.0 0.0
A + 1,2 2.8 7.7 0.0 0.3 1.8 1.4

3rd 1,2,3 4.3 10.8 2.2 0.6 2.7 1.7
1st 1 0.9 1.9 3.9 4.0 0.0 0.0

B + 1,2 1.2 3.9 6.1 0.9 0.0 0.0
3rd 1,2,3 1.2 5.4 6.4 1.2 0.4 1.7

A 1 0.0 0.0 0.0 0.0 0.0 0.0
+ 1st 1,2 0.3 2.5 0.0 0.0 0.9 0.0
B 1,2,3 0.9 3.6 0.3 0.6 1.3 1.4
A 1 0.0 0.0 0.0 0.0 0.0 0.0
+ 3rd 1,2 0.3 0.5 0.0 0.0 0.4 0.0
B 1,2,3 1.2 2.0 0.0 0.0 0.9 0.8
A 1st 1 3.8 8.2 18.6 0.3 0.0 0.0
+ + 1,2 6.6 20.1 19.7 2.3 2.8 1.4
B 3rd 1,2,3 9.5 24.7 23.0 3.9 5.6 4.7

Table 2: Percentage of locations with non-overlapping error bars from different grid refinement stud-
ies and grid densities, multiplying the estimated uncertainties by 2.4. Calculation of the flow over a
backward facing step.

ing computations of turbulent flows, it is necessary to assume the data to be outside the asymptotic
range and to apply a safety factor of 3.

4.5 Friction resistance of the top wall

The convergence of the total friction resistance of the top wall with the grid refinement is illus-
trated in figure 7. The two plots include the results obtainedwith the Spalart & Allmaras model
(finite-difference and finite-volume versions) and with theBSL and SSTk−ω models. Although
the grid density of the sets A and B is not identical to the set FV, hi is computed from the number
of nodes in the vertical direction, which is the same for all the finest grids. The plots also include
data fits, derived by using the 11 finest grids of sets A and B and9 finest grids of set FV. The error
bars from the three levels of grid refinement presented in theprevious section are also included in the
plots. For the FV solution, there are only two error bars: forhi = h1 estimated from the 9 finest grids
data and forhi = 2h1 estimated from the 6 coarsest grids data. The same conditions apply also to the
remaining figures presented in this section.

The results of all the solutions per turbulence model are perfectly consistent and it would seem
that the finest grid solutions are in the asymptotic range. However, the observed order of accuracy is
not always equal to 2.
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Figure 7: Friction resistance of the top wall as a function ofthe grid refinement level. Calculation of
the flow over a backward facing step.
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Figure 8: Friction resistance of the bottom wall as a function of the grid refinement level. Calculation
of the flow over a backward facing step.

4.6 Friction resistance of the bottom wall

Figure 8 presents the convergence of the friction resistance of the bottom wall with the grid re-
finement. Because of the flow features, the grid density required to attain the asymptotic range is finer
than for the top wall. However, there are more things to be noted:

• In a given grid, the third-order discretization in the convective terms of the turbulence models
improves the accuracy of the solution compared to the first-order approach. Furthermore, the
deviation from the fits applying to the finest grids starts already for small values ofhi in the
first-order case.

• The convergence is not monotonic for the two versions of thek−ω model, but not oscillating
(above and below a mean value). It is a typical example of a case being (wrongly?) classified
as “anomalous behaviour”. The power series expansion with the first and second order terms is
able to make an excellent fit to the data. On the other hand, thefit made for the 11 finest grids
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of the SST data indicates apparent divergence, because the maximum ofCF is betweenhi = h1
andhi = h2. In this case, assuming that we have an “anomalous behaviour” condition is the
correct choice.

4.7 Pressure resistance of the bottom wall

Figure 9 presents the convergence of the pressure resistance of the bottom wall with the grid
refinement. The results suggest the following remarks:
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Figure 9: Pressure resistance of the bottom wall as a function of the grid refinement level. Calculation
of the flow over a backward facing step.

• Although the different numerical solutions are perfectly consistent for each turbulence model,
the convergence properties ofCD are clearly dependent on the selected turbulence model.

– For the Spalart & Allmaras model,p was not established for the finite-difference results
and it is 1.2 for the finite-volume solution. The stronger grid dependency observed in the
finite-volume solution is probably originated by the fact that sets A and B always include
a node at the corners of the step, which is not guaranteed in set FV. In the finite-difference
solutions, the grid topology seems to be more important for the grid dependency than the
approximation of the convective terms of theν̃ transport equation.

– In thek−ω models, there is more influence of the order of approximationof convection
for k andω than forν̃ . However, in set A the third-order solution in the coarsest grids is
less accurate than the first-order predictions. This effectis related to the behaviour ofνt
at the corner of the step, as we will illustrate below.

Figure 9 includes an inconsistent estimation of the error bar for the third-order solution in set
A with the BSL k−ω model. In this case,U(CD) is equal to 3 times the data range for grids with
hi ≥ 4. However, without the knowledge of the data from the other grids the estimated error bar would
certainly be considered too conservative!
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4.8 Re-attachment point

The convergence of the re-attachment point on the bottom wall is illustrated in figure 10. The
results are surprising, to say the least.
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Figure 10: Re-attachment point on the bottom wall as a function of the grid refinement level. Calcu-
lation of the flow over a backward facing step.

• None of the convergence histories with the Spalart & Allmaras model is monotonic.

• In both turbulence models, there is a significant effect of the discretization of the convective
terms of the turbulence quantities transport equations. Asexpected, with the finite-difference
version, the first-order solutions are less accurate than the third-order predictions, which are
closest to the FV solution (also third-order for convectionof ν̃) for the Spalart & Allmaras
model.

• If only the two first-order calculations had been performed with the Spalart & Allmaras model,
it would have been hard to recognize that the solution is still far from convergence, in particular
for set A. Inevitably, the estimated error bar for this case is not conservative.

• A limit applied to the eddy-viscosity determination (main difference between the BSL and SST
k−ω models) is sufficient to change drastically the convergenceproperties observed for the
re-attachment point.

4.9 Horizontal velocity component

Figure 11 presents the convergence with grid refinement of the horizontal velocity component,ux,
at three selected locations:x = 0,y = 1.1H, x = H,y = 0.1H andx = 4H,y = 0.1H. As expected,
the convergence properties are dependent on the selected location, turbulence model, discretization
adopted and grid set. The main observations suggested by thedata are:
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Figure 11: Convergence ofux as a function of the grid refinement ratio atx = 0,y = 1.1H, x = H,y =
0.1H andx = 4H,y = 0.1H. Flow over a backward facing step.
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Figure 12: Convergence ofuy as a function of the grid refinement ratio atx = 0,y = 1.1H, x = H,y =
0.1H andx = 4H,y = 0.1H. Flow over a backward facing step.

• In many cases, it is hard to establish the observed order of accuracy. Nevertheless, it is not
difficult to see that most of the grids withhi > 2h1 are outside the asymptotic range, i.e. almost
all the grids used in [8].

• Although the convergence properties are not always identical, the three solutions with third-
order convection of̃ν , A, B and FV, are in excellent agreement.
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• With the exception of the location close to the corner of the step, x = 0,y = 1.1H, there is a
clear improvement in the solution accuracy for the third-order discretizations of the convective
terms of the turbulence quantities transport equations.

4.10 Vertical velocity component

Figure 12 shows the convergence with grid refinement of the vertical velocity component,uy, at
three selected locations:x = 0,y = 1.1H, x = H,y = 0.1H andx = 4H,y = 0.1H. The tendencies
observed in the vertical velocity confirm most of the difficulties discussed above forux. However, the
convergence properties are clearly different from those obtained forux. For example, the convergence
of uy atx= H,y= 0.1H andx= 4H,y= 0.1H is astonishingly different. The third-order data obtained
in set A atx= H,y= 0.1H with the BSL model is a good example of how difficult it is to makereliable
uncertainty estimates for these complex turbulent flows.

4.11 Pressure coefficient

Figure 13 presents the convergence with grid refinement of the pressure coefficient,Cp, at three se-
lected locations:x= 0,y= 1.1H, x= H,y= 0.1H andx= 4H,y= 0.1H. The convergence properties
of Cp are not identical to those observed for the Cartesian velocity components. Nonetheless, most of
the remarks made above for the two Cartesian velocity components apply also to the convergence of
the pressure coefficient.
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Figure 13: Convergence ofCp as a function of the grid refinement ratio atx= 0,y= 1.1H, x= H,y=
0.1H andx = 4H,y = 0.1H. Flow over a backward facing step.
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Figure 14: Convergence ofνt as a function of the grid refinement ratio atx = 0,y = 1.1H, x = H,y =
0.1H andx = 4H,y = 0.1H. Flow over a backward facing step.

4.12 Eddy-viscosity

Figure 14 presents the convergence with grid refinement of the eddy-viscosity,νt , at three selected
locations:x = 0,y = 1.1H, x = H,y = 0.1H andx = 4H,y = 0.1H. We observe the following:

• As expected, the discretization of the convective terms of the turbulence quantities transport
equations has a larger influence inνt than on the mean flow quantities.

– For the Spalart & Allmaras model, there is a systematic improvement of the accuracy of
theνt predictions with the change from first to third-order discretizations.

– This improvement is not so clear in the BSL solutions. In fact,the troublesome conver-
gence of the mean flow quantities atx = 0,y = 1.1H for the third-order solution in set A
is caused by a severe overshoot of the eddy-viscosity that starts forhi > 1.4h1. The same
effect is observed for the SST model, but with a lowest intensity. These overshoots are
probably removed with the use of flux limiters.

5 Validation

The Validation Procedure proposed for the 3rd Workshop on CFD Uncertainty Analysis [15] com-
pares two quantities:

• The validation uncertainty,Uval.

Uval =
√

U2
num+U2

input +U2
D
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• The validation comparison error,E

E = S−D

Unum is the numerical uncertainty,Uinput is the parameter uncertainty,UD is the experimental uncer-
tainty, S is the numerical prediction andD the experimental value. In this exercise we have used the
strong model concept [15], i.e.Uinput = 0.

The exercise is performed for the solutions obtained with third-order convection in the turbulence
quantities transport equation in the finest grids of set B.Unumis estimated with the procedure presented
above using the data of the 11 finest grids. The experimental data and their uncertainty are taken from
[20, 21]. The procedure identifies deficiencies in the modelling when|E| > Uval.

5.1 Pressure coefficient along the bottom wall

Figure 15 presents the pressure coefficient along the bottomwall. It contains plots with the usual
comparisons between predictions and experiments, although including the not so usual error bars, and
the comparison between|E| andUval. This type of representations will also be used in the remainder
of this section.
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Figure 15: Validation exercise for the pressure coefficientalong the bottom wall. Flow over a back-
ward facing step.

In this case, the main advantage of the classical comparisons is to show where are the highest
values ofUval. It is clear that downstream of the flow circulation regionUval ≃UD. The comparisons
of E andUval indicate that the smallest modelling error is obtained for the SSTk−ω model.
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5.2 Pressure coefficient along the top wall

The pressure coefficient along the top wall is depicted in figure 16. In this case, most of the
locations exhibit|E| < Uval for the three turbulence models andUval ≃ UD. This means that the
validation of any improvement in the modelling would require a more accurate experiment.
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Figure 16: Validation exercise for the pressure coefficientalong the top wall. Flow over a backward
facing step.

5.3 Skin-friction coefficient along the bottom wall

Figure 17 presents the distribution of skin friction coefficient, Cf , along the bottom wall. The
last two locations with experimental measurements are too close to the outlet of the computational
domain. The predictions show a jump inCf that must be caused by the approximate boundary con-
ditions at the outlet (the pressure is constant at the outlet). As a consequence,Unum is one order of
magnitude larger than in the rest of domain.

None of the turbulence models exhibits|E| < Uval for most of the bottom wall. As forCp, the
smallest values ofE are obtained for the SSTk−ω model, but downstream of re-attachment|E| >
Uval. These results suggest an investigation into the effect of the location of the outlet boundary.

5.4 Horizontal velocity profiles

The horizontal velocity profiles atx = H, x = 4H andx = 6H are plotted in figure 18. None of
turbulence models leads to|E| < Uval for the three selected profiles.
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Figure 17: Validation exercise for the skin-friction coefficient along the bottom wall. Flow over a
backward facing step.

At x= H andx= 4H (i.e. in the flow separation region) the BSL and SST models have|E| clearly
smaller than the Spalart & Allmaras model. Surprisingly, the smallest values of|E| close to the bottom
wall atx= 6H are obtained for the Spalart & Allmaras model and the largestfor the SST model. This
is puzzling because it is in contradiction with what was observed for the skin friction coefficient. But
it is good to bear in mind that the experimental uncertainty is assumed to beUD = 0.02(ux)D, which
means that it leads to smallest values ofUD at regions where it is hardest to measure.

Suspiciously, the three turbulence models fail at the top wall for the three locations. The thickness
of the top boundary-layer seems to be larger in the experiments than in the predictions. We recall
that the inlet profiles at the top are obtained from the boundary-layer profiles at the bottom [19].
Therefore, assumingUinput = 0 might be too optimistic.

5.5 Vertical velocity profiles

The vertical velocity profiles atx = H, x = 4H andx = 6H are presented in figure 19. Assuming
thatUD is realistic, none of the turbulence models leads to|E| < Uval. At x = H, Uval close to the
bottom is mainly determined byUnum, but for the downstream stations this local increase ofUnumdoes
not appear. In this case, the differences between the three turbulence models are clearly smaller than
for the horizontal velocity component.
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Figure 18: Validation exercise for the horizontal velocityprofiles atx = H, x = 4H andx = 6H. Flow
over a backward facing step.
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Figure 19: Validation exercise for the vertical velocity profiles atx = H, x = 4H andx = 6H. Flow
over a backward facing step.
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Figure 20: Validation exercise for the Reynolds-stress profiles atx = H, x = 4H andx = 6H. Flow
over a backward facing step.
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Turbulence Model S Unum D UD |E| Uval
Spalart & Allmaras 6.08 0.07 6.26 0.10 0.18 0.12
BSL k−ω 5.44 0.62 6.26 0.10 0.82 0.63
SSTk−ω 6.21 0.18 6.26 0.10 0.05 0.61

Table 3: Validation exercise for the re-attachment point. Flow over a backward facing step.

5.6 Reynolds-stress profiles

Figure 20 presents the Reynolds-stress6 profiles atx = H, x = 4H andx = 6H. Naturally, there
is significant increase ofUnum close to the bottom wall due to theUnum obtained foruy. This leads to
|E|<Uval for the three turbulence models, butUval is so high that it would be hard to have|E|>Uval.

As for several of the previous flow quantities, the smallest values of|E| are obtained for the SST
k−ω model that with the exception of the flow separation region atx = 4H exhibits a remarkable
performance in the estimation ofuv.

5.7 Re-attachment point

Finally, table 3 presents the results for the re-attachmentpoint, xret. It is interesting to observe
the influence of the turbulence model. The estimated numerical uncertainty differs one order of
magnitude, with the lowest for the Spalart & Allmaras model and the highest for the BSLk−ω. The
only turbulence model that leads to|E|< Uval is the SSTk−ω model. However,Uval is roughly 10%
of the predicted value, with roughly 7% coming from the numerical uncertainty.

6 Conclusions

This paper presents the evaluation of a method for the estimation of the discretization uncer-
tainty and the application of a recently proposed Validation procedure in the calculation of the two-
dimensional flow of an incompressible fluid over a backward facing step. The procedure to estimate
the discretization uncertainty is based on a Least Squares version of the Grid Convergence Index
complemented with alternative estimators based on power series with fixed exponents and on the data
range.

Solution Verification studies have been performed for threegrid sets with the finite-difference and
finite-volume versions of PARNASSOS using the one-equation turbulence model of Spalart & All-
maras model and the baseline and shear-stress transport variants of thek−ω two-equation turbulence
models proposed by Menter. With the finite-difference version, the grid refinement studies were per-
formed with first and third-order approximations of the convective terms of the turbulence quantities
transport equations.

6The plotted quantity isuv, the symmetric of the Reynolds stress divided byρ.
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The selected grid sets cover a wide range of grid densities and include unreasonably coarse grids
for such flow but also much finer grids than what is commonly used these days in practical RANS
calculations. This enables us to assess the performance of the numerical uncertainty estimation at
different levels of grid refinement and to evaluate the reliability of the proposed procedure with data
clearly outside the asymptotic range. In order to understand the performance of the proposed method,
we have also checked the behaviour of the convergence properties with the grid refinement level. The
results obtained suggest the following conclusions.

• The main difficulty of methods based on the estimation of the observed order of accuracy is the
classification of the apparent convergence condition.

– For the same solution (same discretization, grid, turbulence model and location), a certain
flow quantity can be in the asymptotic range while other flow quantities may be outside it.

– Even with the least squares approach used in this study, a single evaluation of the observed
order of accuracy for a given data set is not reliable. There are two possible solutions to
avoid this deficiency:

∗ Accept that the data are outside the asymptotic range and consequently apply an in-
creased safety factor.

∗ Perform more than one estimate of the observed order of accuracy. However, this
will require at least 5 to 6 grids and an extra criterion to decide when the estimation
is reliable or not.

• Including first-order discretizations in the turbulence quantities transport equations has a non-
negligible effect on the accuracy of the mean flow quantitiespredictions. It increases the diffi-
culties for the estimation of the numerical uncertainty, because for some flow quantities a grid
that is believed to be extremely fine may in fact be too coarse for an accurate solution with a
first-order discretization, leading to the problems discussed above.

• With the safety factor set to 3 (data assumed to be outside theasymptotic range) our proce-
dure for estimation of the numerical uncertainty came closeto satisfying the 95 % confidence
criterion for the turbulent flow over a backward-facing stepfor fine and coarse grid levels.

• The initial application of the proposed Validation procedure has demonstrated that it represents
a huge improvement compared to the common graphical comparison of numerical predictions
and experiments. It is interesting to observe that it pointsout limitations in the modelling, but
also shows deficiencies in the numerical simulations and/orin the experiments.
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