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Testing Uncertainty Estimation and Validation Procedures in the
Flow Around a Backward Facing Step
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Abstract

This paper presents an evaluation of a method for the estimat the discretization uncertainty
based on a Least Squares version of the Grid Convergence &mdiex recently proposed Validation
procedure in the calculation of the two-dimensional flow mirrcompressible fluid over a backward
facing step. Solution Verification studies are performadtiioee grid sets with the finite-difference
and finite-volume versions of PARNASSOS using the one-egundtirbulence model of Spalart &
Allmaras model and the baseline and shear-stress transp@nts of thek — w two-equation turbu-
lence models, proposed by Menter. The results show thadtliffisult to obtain reliable estimates of
the uncertainty of flow quantities in turbulent flows. Withr@gedure based on the determination of
the observed order of accuracy, the level of grid refinemeaiaa solution accuracy required to obtain
reliable estimates of the numerical uncertainty is muchr finen what is commonly used nowadays.
The proposed procedure for Validation is clearly more didhan the popular graphical comparison
of predictions and experiments.

1 Introduction

The significant increase of the use of Computational Fluidddyits in engineering applications
leads inevitably to a need to establish the credibility e ttumerical results. This goal may be
achieved with Verification and Validation, which compribede different stages, [1]:

1. Code Verification.
2. Solution/Calculation Verification.
3. Validation.

The first two activities are purely mathematical, whereastthird is a science/engineering activity
that intends to assess the suitability of the mathematicalahas a representation of the physical
problem. The 8 Workshop on CFD uncertainty analysis [2] deals with all trstsges, using manu-
factured solutions [3, 4] for Code Verification and the flow oaeéackward facing step for Solution
Verification and Validation.

Code Verification has been extensively performed in [4, 5] ToiBthe finite-difference [9] and
finite-volume [10] 2-D versions of the PARNASSOS flow solvehefefore, in this paper we focus
on Solution Verification and Validation, using the same sy

An updated version of the discretization uncertainty egtiom procedure presented in [8] is tested
in three grid sets for the Spalart & Allmaras model [11] and tyvid sets for the baseline (BSL) and
shear-stress transport (SST) versions ofkithew model [12], originally proposed by Wilcox in [13].
The sets range from unreasonably coarse grids @) to grids which are much finer than those used
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for the second edition of the Workshop [8]. The aim is to chiéxekperformance of the uncertainty
estimation procedure for grids clearly outside the asyiiptange by studying the consistency of the
estimated error bars at different grid levels.

In the finite-difference version of the code, we test first inai-order discretizations of the con-
vective terms of the turbulence quantities transport egogat Thus the impact of the common choice
of first-order convection in the turbulence models (to preveominally positive-definite quantities
from becoming negative) on the accuracy of the solutionstedeer, it also provides an extra check
for the discretization uncertainty estimation procedwddaving solutions of different formal accu-
racy in the same grids.

The forthcoming Validation Procedure proposed by the ASMBA20 Committee [14] will be
tried in a simplified form, i.e. with the strong model concgmrameter uncertainty equal to 0) [15].

The paper is organized in the following way: section 2 givesdescription of the updated version
of the procedure to estimate the discretization uncestathie main properties of the two versions
of the PARNASSOS flow solver are summarized in section 3; tHat®a Verification exercise is
presented in section 4 and the Validation exercise in se&jdinally, the main conclusions of this
study are summarized in section 6.

2 Discretization uncertainty estimation

The basis for the estimation of the discretization uncetydl of the solution of an integral or
local flow quantity on a given grid is the standard Grid Coneerge Index (GCI) method [1], which
says

U = Fs|Ogel - 1)

Fsis a safety factor and, is the error estimator.
The error estimation is preferably obtained by Richardsdrapwlation:

Re=@— @=ah’, )

whereq is the numerical solution of any local or integral scalarmjitg on a given grid (designated
by the subscripf), @ is the estimated exact solutiam,is a constanty, is a parameter which identifies
the representative grid cell size apds the observed order of accuracy.

If results on more than three grids are availalgg,a andp are obtained with a least squares root
approach that minimizes the function:

S(@,a,p) = \/i(q—<%+ahf’>)2, 3)

whereng is the number of grids availale The minimum ofS(g@,, a, p) is found by setting its
derivatives with respect tqy, P; and a; equal to zero, [16]. The standard deviation of thé, fit

L ng = 3, the solution of (3) is equivalent to the solution of (2).ef&fore, at least four geometrically similar grids
must be available to have a least squares root solution.
20bviously, the standard deviation of the fit is zerorige= 3.
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Us, is given by

Ng

3 (4 — (@+ahP))?

Us=4| = : 4
: — ()

The ability to estimate the error with Richardson extrapofatiepends on the apparent conver-
gence condition, being one of the following options:

e Monotonic convergence.
e Oscillatory convergence.
e Monotonic divergence.
¢ Oscillatory divergence.

Having a single grid triplet witl, /h; = h,/h,, it is not difficult® to classify the apparent conver-
gence condition from the convergence ratio:

Ro B
&%=

where @, stands for the finest grid solutiorg, for the medium grid andp, for the coarsest grid
solution. As mentioned by Roache, [17], we have:

O0<R< 1 = Monotonic convergence
—1<R< 0 = Oscillatory convergence
R> 1 = Monotonic divergence
R< -1 = Oscillatory divergence

When more than three grids are available and the least squ@eapproach is followed, this
classification is not as straightforward, because the dataewhibit scatter, [16]. First, we establish
the apparent order of convergenzéom the least squares solution of equation (3). Next, agoily
convergence or divergence is identifieddyy, the number of times the difference between consecutive
solutions changes sign, .69, ; — @) x (@ — @_,) <0. The apparent convergence condition is then
decided as follows:

1. p > 0 for ¢ = Monotonic convergence.
2. p < 0 for @ = Monotonic divergence.
3. ng, > INT(ng/3) = Oscillatory convergence or divergence.

4. Otherwise= Unknown.

3This does not mean that the classification based on a gridttigoreliable.
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The present way of determining oscillatory behaviour dagsdistinguish convergence from di-
vergence. Furthermore, the apparent convergence camditxy be unknown if the first three criteria
listed above are not met. In principle, if the code has beeifie@, i.e. shown to be free of bugs in
the implementation of the numerical model, one would noeexpon-convergent situations to occur.
However, for data outside the asymptotic range it is posgshmt apparent divergence conditions are
obtained as a consequence of too coarse grids. Therefdyethoee conditions are relevant for our
estimation procedure:

1. Monotonic convergence.
2. Oscillatory behaviour.
3. Anomalous behaviour.

The only condition which allows an error estimation basedRahardson extrapolation is mono-
tonic convergence. But even then small perturbations indteerday lead to significant changes in the
estimated value ogb, and thus to sometimes unsatsfactory results when the G@hk least-squares
sense is applied.

In an attempt to overcome this, we have prevously chosen thénmam difference between all
the solutions availablé,,,

AM:max<](g—qoj\> with 1<i<ngA1<j<ng. 5)

as an additional parameter in the procedure. Now we int@tluo others, viz. error estimators based
on power series expansions with fixed exponents:
=@~ @=agh +ah (6)
and
RE=Q—@=AN. (7)

12 and 502 are also calculated in the least squares sense and so weawdlistandard deviations
given by

Ny
Z\(‘R—(%"‘alhi“‘azhiz))z
U= | 8)
S ng—3
and
Ny
Zl((p{—(%+}\1hi2))2
UPZ=,| = 9)
S ng—3

We can summarize our procedure for the estimation of the naalaincertainty, valid for a
nominally second-order accurate method, as follows:

1. The observed order of accuracy is estimated with the kspsires root technique to identify
the apparent convergence condition according to the defirgiven above.
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2. For monotonic convergence:

e For095< p<2.05

Up= 1.25(8zg +Us) .
e ForO< p<0.95

U, = min (1.25(3z¢+Us) ,1.25min(1.6,2.28/ p— 1.4) (3z¢ +Ug?)) .

e Forp>205

U, = max(1.25(3zg +Us) , 1.25min(1.6,3p—5.15) (832 +Ug?)) -

3. For oscillatory convergence :

4. |n other conditions:

U, =min(30y,3(3kE+Us?)) .

The change in the safety factor fpr< 0.95 andp > 2.05 reflects the decrease of confidence in
the extrapolation. Obviously, the limits are chosen in aihad way (numerical experimentation in a
limited number of cases). At present, we have selected ancmnits linear change of the safety factor
with a maximum value of 2 fop < 0.76 orp > 2.25.

The apparent divergence condition is included in the “arloosabehaviour” category, which may
be questionable. In smooth flow fields, such apparent camdghould only appear in data clearly
outside the asymptotic range. However, our previous egpee has shown that in cases where the
scatter is similar to changes between grids we can obtainskeading classification of “apparent
divergence”. Obviously, we have no guarantee that the @gpres conservative for the case of data
clearly outside the asymptotic range.

3 PARNASSOS flow solver

The 2-D versions of PARNASSOS solve the steady, incompresdieynolds-averaged Navier
Stokes equations using eddy-viscosity turbulence modsails of the implementation of the two
versions are given in [9] and [10]. The main properties ofttix@ versions are summarized below.

e The finite-difference, FD, version discretizes the coritinend momentum equations written
in Contravariant form, which is a weak conservation form. Tinge-volume, FV, version
discretizes the strong conservation form of the equations.
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e The FD version computes the momentum balance along thetidinecof the curvilinear co-
ordinate system, whereas the FV version calculates the mmmebalance for its Cartesian
components.

e The FD code has a fully-collocated arrangement with the ankis and the discretization cen-
tered at the grid nodes. In the FV code unknowns are definesllatentres.

e Both versions apply quasi-Newton linearization to the cotive terms and are at least second
order accurate for all the terms of the continuity and momner¢quations. Third-order upwind
discretisation is applied to the convective terms.

e The linear system of equations formed by the discretizedimaity and momentum equations
is in both versions solved simultaneously, using GMRES,,[Mh a coupled ILU precondi-
tioning.

e Under-relaxation is applied with a quasi time-derivatiesa.

e The transport equations for the turbulence quantities aeratized with first or third-order
(with our without limiters) upwind schemes.

e The linearization procedure of the production and disgpaterms of the turbulence quantities
follows the standard approach, i.e. production is addelddaight-hand side and dissipation to
the main-diagonal.

e The solution of the turbulence quantities transport eguaatiis uncoupled from solving the
continuity and momentum equations.

4 Solution Verification

4.1 Computational domain, flow and boundary conditions

The computational domain of the flow around a backward fasieg is bounded by two walls and
two X constant planes;4H upstream and 46 downstream of the step, whelreis the step height.
The Reynolds number based on the step height and the veldtity mcoming flowU,;, is 5x 10°.

In the present calculations, we have specified all the redudlow quantities at the inlet, with the
exception of the pressure coefficient, using the profilegegdad for the Workshop [19]. The pressure
coefficient is extrapolated from the interior of the domaissuming that its second derivative in the
streamwise direction is zero.

At the walls, the no-slip and impermeability conditions applied, which leads tay = uy = 0.

v andk are set equal to 0 and is specified at the first two nodes away from the wall using & n
wall solution of thew transport equation given in [13].

In the finite-difference version of the method, the momen&guation in the normal direction is
solved at the wall to obtain the pressure value; in the finilewe version the pressure at the wall
is found from linear extrapolation from the interior of therdain. At the outlet boundaryy, uy
and the turbulence quantities are linearly extrapolatedhfthe interior of the domain. The pressure
coefficient is set to zero.
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4.2 Calculation details

All the calculations were performed with 15-digits precisiand the iterative error was reduced
to machine accuracy. In such conditions, it is logic to asstimat the contributions of the round-off
and iterative errors to the numerical uncertainty is néigliggcompared to the discretization error.

4.3 Grid sets

We have selected two sets of 19 single-block, structuremingérically similar grids, A and B, to
perform the calculations of the flow over a backward facimg stith the finite-difference version of
PARNASSOS. The finite-volume version was used in a third séitodystematically refined grids,
designated by FV.

i llllllll

11117
ll [T
i

.."lll//// /
.."ll/////////////
."’ /////////////////

L /////////////1’1

"n,,,, ////////////////[

."lll///////////%é///

"" //IIIII
I‘//

LI "l
it

il 'Hﬂf'f"" "","" I'I%'I’”
mmm i ’IIIIIIIIIIIIIII
d"ﬁﬂn',':',', 'II;/'/%/}”””
"""""’f'{'f:,%%’/’/’///,,”””
L

SetA SetB FV
Figure 1: Illustration of the three grids sets for the cadtioh of the flow over a backward facing step.

e Set A is similar to the first grid set proposed for the firstiediof the Workshop, [19], contain-
ing non-orthogonal curvilinear grids with the same numidaramles in both directions. At the
walls the grids are orthogonal.

e Set B is the same as the set B used in the first edition of the $Nogk [19], and has straight
lines connecting the bottom and top walls and the same nuaildes in both directions.

e FV includes non-orthogonal curvilinear grids with the nienbf nodes in the streamwise di-
rection equal to twice the number of nodes in the normal doacUnlike sets A and B, the set
FV has the unfavourable feature that the lower (concave)ezaf the step does not coincide
with a grid node in all grids.

Sets A and B have coarsest grids of>441 nodes and finest grids of 481401 nodes covering
a grid refinement ratio of 10. For FV, the coarsest grid hasx181 nodes and the finest 881401
nodes. The grids in the vicinity of the step are illustrateéigure 1.
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4.4 Testing the discretization estimation procedure

One of the aims of the present study is to test the relialmfithe uncertainty estimation procedure
even in grids clearly outside the asymptotic range. To thés ee have performed 10 grid refinement
studies with the finite-difference version and the follogvinrbulence models:

e Spalart & Allmaras model [11]:

— Sets A and B with first and third-order discretizations of tomvective terms of th@
transport equation.

e BSL k— wmodel [12]:

— Sets A and B with first and third-order discretizations of tbhavective terms of thk and
w transport equations.

e SSTk— w model [12]:

— Sets A and B with third-order discretizations of the coniwecterms of thek andw trans-
port equations.

In both grid sets, there are ¥919 grid node locations common to all members of the set, thiere
requiring no interpolation to evaluate the convergencegriies with the grid refinement. Naturally,
these locations are not identical in both sets. So for set Bave used local bi-cubic interpolation to
obtain the solution at the fixed locations from set A.

For the two Cartesian velocity componentg,and uy, and pressure coefficiéntC:, we have
computed the following quantities:

e Percentage of locations with estimated discretizatiorertamty greater than 1@ for u, and
10°° for uy andCy, N,

e For theN(p locations:

— The percentage of locations with apparent monotonic coevereNC,,.
— For theNc(p locations:

* The mean apparent order of convergenge,
* The minimum apparent order of convergengg,..
The maximum apparent order of convergenBgax

The percentage of locations in four different rangep:gb < 0.095, 095< p < 2.05,
2.05< p< 3.05,p> 3.05.

*

*

These parameters were estimated for three different lefgigd refinement:

1. 401x 401 grid using the data of the 11 finest grids covering a gffideeent ratio of 2, desig-
nated by Level 1.

4CI*J = (p* poutlet)/(pur%f) = 1/2CP
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2. 201x 201 grid using the data of 6 grids covering a grid refinemetib 1@af 2, designated by
Level 2.

3. 101x 101 grid using the data of the 4 coarsest grids covering argfidement ratio of 2.5,
designated by Level 3.
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Figure 2: Percentage of locations with estimated disagtim uncertainty of the horizontal velocity
component above 1d. Calculation of the flow over a backward facing step.

Figure 2 presentsl,, for the three levels tested. ExpectedW, increases with the grid coars-
ening. However, the minimum value obtained for the Level &til above 80%. Similar results are
obtained foruy andCp.

The percentage of locations of apparent monotonic conwerges illustrated in figure 3 for the
three mean flow variables. The results are somehow unexpetitere is no clear trend indicating a
reduction ofN. with the coarsening of the grids and in some cases the tepderms to be exactly the
opposite. Furthermore, from the different options incllidethe data, only the kind of flow quantity
seems to have a minor influence on the trends observidd iDifferent grid sets, turbulence models
and discretizations of convection in the turbulence moldsld to changes iN; with the coarsening
of the grid selected for the uncertainty estimation.

The mean value of the estimated order of convergepg, at the locations with apparent mono-
tonic convergence is plotted in figure 4. The data confirm iffedlties in the estimation op in
turbulent flow calculations. We should expect an increagg gf, with the change from first to third-
order in the turbulence models convection, but that is neags the casep,,.should be closer to 2
for the finest grids, but there are cases where the differen2és actually decreasing with the coars-
ening of the grid. The only expected trend observed is phat, depends on the selected turbulence
model.

The minimum values op are systematically too close to O (around 0.1) and the maxivalues
of p are always above 5 and in most of the cases 6. In order to gieagiltustration of the difficulties
in the p estimation, figure 5 presents the distributiorpdbr uy at the three levels for the discretization
uncertainty estimation.

With very few exceptions, the percentage of locations with the expected range @b < p <
2.05) is always smaller than 50% and in some cases it is clog®4o Zhere is no tendency of increase
of this percentage with grid refinement. In fact, there ave tases with the largest percentage of grid
nodes in the expected range for the coarsest grids (lev&Vidhl very few exceptions, the percentage
of locations withp > 3.05 is marginal, but the percentages for fhe: 0.95 and 205 < p < 3.05
ranges depend on the turbulence model. The lowest rangesahost frequent for thi— w models,
whereas for the Spalart & Allmaras model the other range msidant.
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Figure 3: Percentage of locations with apparent monotameergence. Calculation of the flow over
a backward facing step.

The evaluation of the performance of the proposed procddutle estimation of the discretiza-
tion uncertainty is made checking the overlap of the diffiérerror bars obtained. The first (and
simplest) check is performed for the same grid refinemerdystue. for a given grid refinement
study, we have computed the number of locations where tloe lears from levels 1, 2 and 3 do not
overlap. The results are plotted in figure 6.

Bearing in mind the grid refinement of the grids included irele¥ (101x 101 to 41x 41), the
results are not discouraging. Furthermore, if we repeas#ime exercise only for levels 1 and 2
the percentage of failures is always 0. However, we can make nmhemanding checks, which are
summarized below

e Compare the error bars of solutions obtained in the same gtigvish first and third-order
convection in the turbulence models using 1, 2 or 3 levels.

e Compare the error bars of solutions obtained in differertt gets with the same discretization
using 1, 2 or 3 levels.

e Compare the error bars from all the solutions using 1, 2, ov@de

SIn this case, we have restricted ourselves to the Spalari@akhs and BSIk — w models
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Figure 4: Mean apparent order of convergence at the locatidgtiih monotonic convergence. Calcu-
lation of the flow over a backward facing step.

Table 1 presents the number of inconsistent error bars éomgan flow variables. In most cases,
the percentage of failures is clearly above the 5% targégrésting features in the data are:

e As expected, the percentage of mismatches between théarsincreases with the grid coars-
ening.

e The turbulence model has a significant influence on the owdanfrthe exercise:

— The Spalart & Allmaras model leads systematically to a higieecentage of inconsistent
error bars than the BSk— w model. We recall that the BSk— w results exhibit signifi-
cant percentages of grid nodes wjihk< 0.5, whereas the Spalart & Allmaras model leads
to values ofp > 2.05.

— For the finest grid level, the performance of the proposedgatore is close to acceptable
(only uy exhibits 6% of inconsistent error bars for the finest griduisoh).

e The comparison between solutions in the same grid set witéreint discretizations of the
convective terms of the turbulence quantities transpoumatgns shows significantly higher
percentages of failures than the comparison of error bardifierent grids and the same dis-
cretization.
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Figure 5: Distribution of the apparent order of convergeaitcie locations with monotonic conver-
gence. Horizontal velocity componeny, Calculation of the flow over a backward facing step.

¢ In most cases, the percentage of “failures” is higher forfits-order discretization of con-
vection in the turbulence models than for third-order agpnations. In fact, excluding all the
first-order convection solutions, the performance of theentainty estimation method is only
poor when the coarsest grids are included. Therefore, fieetedf the discretization of the
convective terms of the turbulence quantities transparaggn on the convergence properties
of the mean flow quantities is not negligible.

The results of table 1 show that the present procedure isgtimistic for data referring to coarse
grids and first-order convection in the turbulence modetsortder to get an idea of how much we
should have to increase the safety factors to satisfy thieediegoal of 95% confidence [17], we have
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Figure 6: Percentage of locations with non-overlappingreoars from 3 levels of grid refinement.

Calculation of the flow over a backward facing step.

ol
&

Inconsistent error bars (1,2,3) (%)
Inconsistent error bars (1,2,3) (%)
Inconsistent error bars (1,2,3) (%)

Grid | Conv. TM Spalart & Allmaras BSLk— w
Sets Disc. Levels| uy Uy C;; Uy Uy C’F‘,
15t 1 144 17.8| 3.0 1.2 | 05| 0.0
A + 1,2 119.1/30.1| 219 | 59| 56 | 6.0
3rd 1,2,3 | 36.3|42.2| 299 | 11.3| 13.3| 15.1
15t 1 72 1178| 380 | 40| 24 | 3.2
B + 1,2 |13.6|249| 46.4 | 24.7| 19.8| 18.9
3rd 1,2,3 | 17.8| 32.1| 48.4 | 42.5| 45.5| 43.6
A 1 04 17| 00 | 12| 19| 0.0
+ 15t 1,2 18| 75| 66 | 3.7 | 59| 2.6
B 1,23 | 8.1 |21.8| 13.6 | 18.3| 26.7| 22.8
A 1 04| 00| 03 | 00| 00]| 0.0
+ 3rd 1,2 30, 67| 28 | 06| 1.0| 0.0
B 1,23 215|217 74 | 8.0 |14.9| 135
A 15t 1 26.9|37.1| 465 | 6.0 | 45| 44
+ + 1,2 |33.1/47.6| 56.1 | 33.8| 27.6| 22.5
B 3rd 1,2,3 |1 49.8| 54.1| 60.3 | 59.0| 56.8| 62.6

Table 1. Percentage of locations with non-overlappingrdyvams from different grid refinement stud-
ies and grid densities. Calculation of the flow over a backvacthg step.

repeated the same exercise multiplying the estimated tancges by 2.4. This would correspond to
a factor of safety 3 in the G.C.I, which is recommended by Ro&ohdata outside the asymptotic
range [1]. The results are presented in table 2.

The outcome of the exercise is substantially better thaabtetl. With these increased safety
factors, the method almost satisfies the 95 % confidenceiorteThe exceptions are the first-order
convection solutions for the Spalart & Allmaras model, whdre “standard” safety factors would
have to be multiplied by more than 10 to obtain percentagéailofes below 5% for the three mean
flow variables with all the grid levels tested.

In this type of flow calculations, with a single evaluatiortloé observed order of accuracy (even in
the least square sense) it is practically impossible tod#gewshere data enter the asymptotic range. So
our conclusion is that for the backward-facing step flow aitchand more general for most engineer-
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Grid | Conv. TM Spalart & Allmaras| BSLk—w
Sets Disc. Levels| ux | uy Cp Ux | Uy | Cp

15t 1 09| 05 0.0 [0.0/0.0/0.0
A + 1,2 28| 7.7 0.0 0.3/18]14

3rd 1,2,3 |4.3[/10.8| 22 [06|27|1.7

15t 1 09| 1.9 3.9 [(4.0/0.0/0.0
B + 1,2 | 1.2 3.9 6.1 /09|0.0]|0.0

3rd 1,23 (12| 54 6.4 |1.2|04]|17
A 1 0.0| 0.0 0.0 [0.0/0.0/0.0
+ 18t 1,2 |0.3| 25 0.0 [0.0/0.9|0.0
B 1,23 /09| 3.6 0.3 |06(13|14
A 1 0.0| 0.0 0.0 [0.0/0.0/0.0
+ 3 1,2 |0.3| 05 0.0 [0.0(/0.4|0.0
B 1,23 (12| 2.0 0.0 [0.0/0.9 0.8
A 15t 1 3.8/ 82| 186 |0.3|/0.0|0.0
+ + 1,2 |6.6/20.1| 19.7 [23|28|1.4
B 3 1,23 195247 23.0 | 395647

Table 2: Percentage of locations with non-overlappingrdyams from different grid refinement stud-
ies and grid densities, multiplying the estimated unceties by 2.4. Calculation of the flow over a
backward facing step.

ing computations of turbulent flows, it is necessary to assthme data to be outside the asymptotic
range and to apply a safety factor of 3.

4.5 Friction resistance of the top wall

The convergence of the total friction resistance of the tafi with the grid refinement is illus-
trated in figure 7. The two plots include the results obtaingth the Spalart & Allmaras model
(finite-difference and finite-volume versions) and with 8L and SSTk — w models. Although
the grid density of the sets A and B is not identical to the 3étH-is computed from the number
of nodes in the vertical direction, which is the same for ladl finest grids. The plots also include
data fits, derived by using the 11 finest grids of sets A and B%fwdest grids of set FV. The error
bars from the three levels of grid refinement presented ipteeious section are also included in the
plots. For the FV solution, there are only two error bars:Ho h, estimated from the 9 finest grids
data and foh; = 2h, estimated from the 6 coarsest grids data. The same cor=lajgply also to the
remaining figures presented in this section.

The results of all the solutions per turbulence model aréepty consistent and it would seem
that the finest grid solutions are in the asymptotic rangevéder, the observed order of accuracy is
not always equal to 2.



Eca & Hoekstra — '8 Workshop on CFD Uncertainty Analysis, Lisbon, October 2008 15

Spalart & Allmaras K—w
0.052 0.052
o SetA, 1% v SetB,1* < Fv L o BSL, SetA, 1* v BSL, SetB, 1 < SST, SetA, 3"
pei7 =10 p=2 p'=2 > BSL, SetB, 3" p=1.9
A SetA, 3" > SetB, 3" A BSL, SetA, 3" p'=2 SST, SetB, 3"
p=2 p=16 p=2
0.05
)
0.048
0,046 gy 00N

Figure 7: Friction resistance of the top wall as a functiothef grid refinement level. Calculation of
the flow over a backward facing step.
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Figure 8: Friction resistance of the bottom wall as a funtbobthe grid refinement level. Calculation
of the flow over a backward facing step.

4.6 Friction resistance of the bottom wall

Figure 8 presents the convergence of the friction resistafi¢he bottom wall with the grid re-
finement. Because of the flow features, the grid density requa attain the asymptotic range is finer
than for the top wall. However, there are more things to bechot

e In a given grid, the third-order discretization in the cortige terms of the turbulence models
improves the accuracy of the solution compared to the fidemoapproach. Furthermore, the
deviation from the fits applying to the finest grids starteadly for small values df, in the
first-order case.

e The convergence is not monotonic for the two versions oktheo model, but not oscillating
(above and below a mean value). It is a typical example of a basg (wrongly?) classified
as “anomalous behaviour”. The power series expansion Whitst and second order terms is
able to make an excellent fit to the data. On the other handitttmrade for the 11 finest grids
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of the SST data indicates apparent divergence, becauseatiismom ofC is betweerh, = h;
andh, = h,. In this case, assuming that we have an “anomalous behawoundition is the
correct choice.

4.7 Pressure resistance of the bottom wall

Figure 9 presents the convergence of the pressure resstdirtbe bottom wall with the grid
refinement. The results suggest the following remarks:

Spalart & Allmaras K—w
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Figure 9: Pressure resistance of the bottom wall as a funofithe grid refinement level. Calculation
of the flow over a backward facing step.

e Although the different numerical solutions are perfectysistent for each turbulence model,
the convergence properties@f are clearly dependent on the selected turbulence model.

— For the Spalart & Allmaras modep was not established for the finite-difference results
and it is 1.2 for the finite-volume solution. The strongedgitependency observed in the
finite-volume solution is probably originated by the facitkets A and B always include
a node at the corners of the step, which is not guaranteed Vst the finite-difference
solutions, the grid topology seems to be more importanttfergrid dependency than the
approximation of the convective terms of theéransport equation.

— In thek— w models, there is more influence of the order of approximatiforonvection
for k andw than forV. However, in set A the third-order solution in the coarse&tgis
less accurate than the first-order predictions. This eféectlated to the behaviour of
at the corner of the step, as we will illustrate below.

Figure 9 includes an inconsistent estimation of the errorfathe third-order solution in set
A with the BSLk — w model. In this casd) (Cp) is equal to 3 times the data range for grids with
h; > 4. However, without the knowledge of the data from the othieisghe estimated error bar would
certainly be considered too conservative!
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4.8

Re-attachment point

The convergence of the re-attachment point on the bottorhisvdlustrated in figure 10. The

result
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S are surprising, to say the least.
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Figure 10: Re-attachment point on the bottom wall as a funatidhe grid refinement level. Calcu-

lation

4.9

of the flow over a backward facing step.

None of the convergence histories with the Spalart & Allnsareodel is monotonic.

In both turbulence models, there is a significant effect efdiscretization of the convective
terms of the turbulence quantities transport equationsexp&cted, with the finite-difference
version, the first-order solutions are less accurate tharhind-order predictions, which are
closest to the FV solution (also third-order for convectainv) for the Spalart & Allmaras
model.

If only the two first-order calculations had been performetththe Spalart & Allmaras model,
it would have been hard to recognize that the solution isfatifrom convergence, in particular
for set A. Inevitably, the estimated error bar for this caseat conservative.

A limit applied to the eddy-viscosity determination (maifference between the BSL and SST

k — w models) is sufficient to change drastically the convergemogerties observed for the
re-attachment point.

Horizontal velocity component

Figure 11 presents the convergence with grid refinementedidnizontal velocity componenty,
at three selected locationg:= 0,y = 1.1H, x=H,y = 0.1H andx = 4H,y = 0.1H. As expected,
the convergence properties are dependent on the selecegig turbulence model, discretization
adopted and grid set. The main observations suggested oiataare:
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Figure 11: Convergence of as a function of the grid refinement ratioat 0,y=1.1H,x=H,y =

0.1H andx=4H,y = 0.1H. Flow over a backward facing step.
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Figure 12: Convergence of as a function of the grid refinement ratioxat 0,y = 1.1H, x=H,y =

0.1H andx=4H,y = 0.1H. Flow over a backward facing step.

e In many cases, it is hard to establish the observed orderaifracy. Nevertheless, it is not
difficult to see that most of the grids witih > 2h, are outside the asymptotic range, i.e. almost
all the grids used in [8].

e Although the convergence properties are not always idantice three solutions with third-
order convection of, A, B and FV, are in excellent agreement.
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¢ With the exception of the location close to the corner of ttep,sx = 0,y = 1.1H, there is a
clear improvement in the solution accuracy for the thirdesrdiscretizations of the convective
terms of the turbulence quantities transport equations.

4.10 Vertical velocity component

Figure 12 shows the convergence with grid refinement of tingcad velocity component,, at
three selected locationx=0,y=1.1H, x=H,y=0.1H andx=4H,y = 0.1H. The tendencies
observed in the vertical velocity confirm most of the diffices discussed above fag. However, the
convergence properties are clearly different from thogainbd forug. For example, the convergence
of uyatx=H,y=0.1H andx=4H,y= 0.1H is astonishingly different. The third-order data obtained
in set A atx=H,y=0.1H with the BSL model is a good example of how difficult it is to mak&kable
uncertainty estimates for these complex turbulent flows.

4.11 Pressure coefficient

Figure 13 presents the convergence with grid refinemeneqgstbssure coefficier,, at three se-
lected locationsx=0,y=1.1H,x=H,y=0.1H andx=4H,y= 0.1H. The convergence properties
of C, are not identical to those observed for the Cartesian vglooinponents. Nonetheless, most of
the remarks made above for the two Cartesian velocity comysm@gply also to the convergence of
the pressure coefficient.

Spalart & Allmaras
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Figure 13: Convergence G, as a function of the grid refinement ratioat 0,y = 1.1H, x=H,y =

0.1H andx=4H,y = 0.1H. Flow over a backward facing step.
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4.12 Eddy-viscosity

Figure 14 presents the convergence with grid refinemeneaédadly-viscosityy;, at three selected
locations:x=0,y=1.1H,x=H,y=0.1H andx =4H,y = 0.1H. We observe the following:

e As expected, the discretization of the convective termdhefturbulence quantities transport
equations has a larger influenceyrthan on the mean flow quantities.

— For the Spalart & Allmaras model, there is a systematic im@noent of the accuracy of
the v, predictions with the change from first to third-order disizaions.

— This improvement is not so clear in the BSL solutions. In fdog troublesome conver-
gence of the mean flow quantitiesxat 0,y = 1.1H for the third-order solution in set A
is caused by a severe overshoot of the eddy-viscosity thasgorh, > 1.4h,. The same
effect is observed for the SST model, but with a lowest intgng hese overshoots are
probably removed with the use of flux limiters.

5 Validation

The Validation Procedure proposed for th&\&orkshop on CFD Uncertainty Analysis [15] com-
pares two quantities:

e The validation uncertainty), .

Uval = \/Ur%um—i_ui?\put—i_ul%
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e The validation comparison errdg,
E=S-D

Unum is the numerical uncertainty; , ; is the parameter uncertaintyy, is the experimental uncer-
tainty, Sis the numerical prediction arld the experimental value. In this exercise we have used the
strong model concept [15], i.t=.1input =0.

The exercise is performed for the solutions obtained wiildtbrder convection in the turbulence
quantities transport equation in the finest grids of s&tBmis estimated with the procedure presented
above using the data of the 11 finest grids. The experimeatalahd their uncertainty are taken from
[20, 21]. The procedure identifies deficiencies in the manglvhen|E| > U, .

5.1 Pressure coefficient along the bottom wall

Figure 15 presents the pressure coefficient along the batt@inIt contains plots with the usual
comparisons between predictions and experiments, althiomguding the not so usual error bars, and
the comparison betweeR| andU, ... This type of representations will also be used in the redein
of this section.
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Figure 15: Validation exercise for the pressure coeffica@ohg the bottom wall. Flow over a back-
ward facing step.

In this case, the main advantage of the classical compavrisoto show where are the highest

values ofU, . Itis clear that downstream of the flow circulation reglgp, ~ Up. The comparisons
of E andU,,, indicate that the smallest modelling error is obtained fier $STk — w model.
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5.2 Pressure coefficient along the top wall

The pressure coefficient along the top wall is depicted inrégl6. In this case, most of the
locations exhibit|E| < U, for the three turbulence models allg,, ~ Up. This means that the
validation of any improvement in the modelling would reguér more accurate experiment.
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Figure 16: Validation exercise for the pressure coefficaang the top wall. Flow over a backward
facing step.

5.3 Skin-friction coefficient along the bottom wall

Figure 17 presents the distribution of skin friction coeéfit, C;, along the bottom wall. The
last two locations with experimental measurements are limgedo the outlet of the computational
domain. The predictions show a jump@j that must be caused by the approximate boundary con-
ditions at the outlet (the pressure is constant at the Quthet a consequencé),ym is one order of
magnitude larger than in the rest of domain.

None of the turbulence models exhibjE| < U, ., for most of the bottom wall. As fo€p, the
smallest values of are obtained for the SSK— w model, but downstream of re-attachméat >
U, - These results suggest an investigation into the effedteofdcation of the outlet boundary.

5.4 Horizontal velocity profiles

The horizontal velocity profiles at= H, x = 4H andx = 6H are plotted in figure 18. None of

turbulence models leads f&| < U, for the three selected profiles.
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Figure 17: Validation exercise for the skin-friction coeiéint along the bottom wall. Flow over a

backward facing step.

At x=H andx=4H (i.e. in the flow separation region) the BSL and SST models |t&velearly
smaller than the Spalart & Allmaras model. Surprisinglg smallest values QE| close to the bottom
wall atx = 6H are obtained for the Spalart & Allmaras model and the larfpeshe SST model. This
is puzzling because it is in contradiction with what was obse for the skin friction coefficient. But
it is good to bear in mind that the experimental uncertaistggsumed to bdy, = 0.02(uy)y, which
means that it leads to smallest valuetJgfat regions where it is hardest to measure.

Suspiciously, the three turbulence models fail at the tolpfeathe three locations. The thickness
of the top boundary-layer seems to be larger in the expetsrban in the predictions. We recall
that the inlet profiles at the top are obtained from the boonteyer profiles at the bottom [19].
Therefore, assuming;, ,,, = 0 might be too optimistic.

5.5 \Vertical velocity profiles

The vertical velocity profiles at=H, x=4H andx = 6H are presented in figure 19. Assuming
thatUp, is realistic, none of the turbulence models lead$gp< U, . At x=H, U, close to the
bottom is mainly determined Ry,,m but for the downstream stations this local increadg gf,does
not appear. In this case, the differences between the threal¢nce models are clearly smaller than
for the horizontal velocity component.
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Figure 18: Validation exercise for the horizontal velo@tyfiles atx = H, x=4H andx = 6H. Flow
over a backward facing step.
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Figure 19: Validation exercise for the vertical velocityfiles atx = H, x = 4H andx = 6H. Flow
over a backward facing step.
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Figure 20: Validation exercise for the Reynolds-stress j@oftx = H, x = 4H andx = 6H. Flow
over a backward facing step.
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Turbulence Model| S | Unum!| D Up | |E] | Uy
Spalart & Allmaras| 6.08| 0.07 | 6.26| 0.10| 0.18| 0.12
BSLk—w 5.44| 0.62 | 6.26| 0.10| 0.82| 0.63
SSTk—w 6.21| 0.18 | 6.26| 0.10| 0.05| 0.61

Table 3: Validation exercise for the re-attachment poifdwrover a backward facing step.

5.6 Reynolds-stress profiles

Figure 20 presents the Reynolds-stPgsofiles atx = H, x = 4H andx = 6H. Naturally, there
is significant increase d&f,ym close to the bottom wall due to théym obtained foruy. This leads to
|E| <U,, for the three turbulence models, ki, is so high that it would be hard to hajeg| > U, .

As for several of the previous flow quantities, the smalledties of|[E| are obtained for the SST
k — w model that with the exception of the flow separation regior -at4H exhibits a remarkable
performance in the estimation of.

5.7 Re-attachment point

Finally, table 3 presents the results for the re-attachrpeitt, .. It is interesting to observe
the influence of the turbulence model. The estimated nusdeuniccertainty differs one order of
magnitude, with the lowest for the Spalart & Allmaras moda #éhe highest for the BSk— w. The
only turbulence model that leads|&| < U, ,, is the SSTk— w model. HoweverJ, _, is roughly 10%
of the predicted value, with roughly 7% coming from the nuiceruncertainty.

6 Conclusions

This paper presents the evaluation of a method for the estimaf the discretization uncer-
tainty and the application of a recently proposed Validapoocedure in the calculation of the two-
dimensional flow of an incompressible fluid over a backwadinfg step. The procedure to estimate
the discretization uncertainty is based on a Least Squamessom of the Grid Convergence Index
complemented with alternative estimators based on powsseith fixed exponents and on the data
range.

Solution Verification studies have been performed for tigree sets with the finite-difference and
finite-volume versions of PARNASSOS using the one-equatiobuience model of Spalart & All-
maras model and the baseline and shear-stress transparntsaf thek — w two-equation turbulence
models proposed by Menter. With the finite-difference \@rsthe grid refinement studies were per-
formed with first and third-order approximations of the cectwe terms of the turbulence quantities
transport equations.

5The plotted quantity isiv, the symmetric of the Reynolds stress divideddoy
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The selected grid sets cover a wide range of grid densitie¢srmfude unreasonably coarse grids
for such flow but also much finer grids than what is commonlydubese days in practical RANS
calculations. This enables us to assess the performante ofuimerical uncertainty estimation at
different levels of grid refinement and to evaluate the belity of the proposed procedure with data
clearly outside the asymptotic range. In order to undedstiae performance of the proposed method,
we have also checked the behaviour of the convergence piesperth the grid refinement level. The
results obtained suggest the following conclusions.

e The main difficulty of methods based on the estimation of theeoved order of accuracy is the
classification of the apparent convergence condition.

— For the same solution (same discretization, grid, turlzéenodel and location), a certain
flow quantity can be in the asymptotic range while other flowrgiies may be outside it.

— Even with the least squares approach used in this studygke smaluation of the observed
order of accuracy for a given data set is not reliable. Thezevao possible solutions to
avoid this deficiency:

« Accept that the data are outside the asymptotic range argkqaently apply an in-
creased safety factor.

«x Perform more than one estimate of the observed order of acguHowever, this
will require at least 5 to 6 grids and an extra criterion toideavhen the estimation
is reliable or not.

¢ Including first-order discretizations in the turbulencentities transport equations has a non-
negligible effect on the accuracy of the mean flow quantpieslictions. It increases the diffi-
culties for the estimation of the numerical uncertaintycdese for some flow quantities a grid
that is believed to be extremely fine may in fact be too coassam accurate solution with a
first-order discretization, leading to the problems disedlsabove.

e With the safety factor set to 3 (data assumed to be outsidasieptotic range) our proce-
dure for estimation of the numerical uncertainty came ctosgatisfying the 95 % confidence
criterion for the turbulent flow over a backward-facing stepfine and coarse grid levels.

e The initial application of the proposed Validation proceglbhas demonstrated that it represents
a huge improvement compared to the common graphical cosgraof numerical predictions
and experiments. It is interesting to observe that it padutislimitations in the modelling, but
also shows deficiencies in the numerical simulations and/bre experiments.
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