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1 Motivation

We have proposed a solution qualification procedure that allows to estimate the order of
convergence of a numerical solution. While this procedure can give a correct result when
it is applied to a manufactured solution, some unexpected results are observed when it is
applied to the backward facing step test case. While a second order accuracy is obtained
with the Cartesian grid as expected, the order of accuracy obtained with the multi-block
structured grid set is about 1.4. As this multi-block grid is nearly orthogonal, and the
grid density is fine enough (up to 200 000 grid nodes), we would also expect a second
order convergence. Another unexpected result is that in some region for some quantity,
results obtained with these two grid sets do not overlap. We continue the investigation
on this issue during the work prepared for this workshop. In order to confirm or infirm
these findings, the same exercises are repeated with OpenFoam.

2 Uncertainty Estimation Procedure

The solution qualification procedure was proposed by the author in the second Lisbon
workshop [1] and was slightly revised later [2]. For completeness, it is repeated here.

To evaluate the uncertainty for a local quantity, we first determine the L1 norm error
for this quantity using the Grid Convergence Index approach. This can be done as fol-
lows. First, we choose a target region which can be a simple rectangular domain inside
the computational domain. Then we build a test grid in the target region. A uniform
Cartesian grid is sufficient for this purpose. Next, we interpolate the solution from all
grids to the test grid. In the present study, a 4th order accurate interpolation method
using a least squares approach is employed. This interpolated solution will be noted as
φk where k is the grid index, grid 1 being the finest one. After that, we evaluate the L1
norm of the solution difference between the grid k and the grid 1 as:
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Here, V oli is the volume of the ith element of the test grid. Richardson extrapolation
is applied to the data set Diffk to determine the estimated true value Diff0 which is
expected to be negative. The extrapolation procedure employed in the present study to
determine Diff0 will be described later in the paper. | Diff0 | can be considered as an
approximation to the L1 norm error of the finest grid. For a given grid with index k, a
data field is constructed by scaling the data difference with respect to the finest grid as
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It is evident that the L1 norm of this data field is equal to the estimated L1 norm error on
the finest grid. Hence, it can be considered as an approximation to the error on the finest
grid. Applying a safety factor Fs according to the common practice in a GCI approach and
taking into account all available solutions, the numerical uncertainty in the ith element of
the test grid for the finest grid solution can be approximated by

Max
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, k = 2, ..., n

where n is the number of available solutions employed in the error estimation procedure.
The value for the safety factor Fs can be 1.25 or 3 depending on the reliability of the
extrapolated result for Diff0. The L1 norm error for each grid can be approximated by

Errk =| Diff0 | +Diffk

The extrapolation method employed in an error estimation procedure is of crucial
importance. Extrapolation with unknown exponent using grid triplets is the simplest
procedure. But it can not always provide a reliable estimation. The approach proposed
by Stern & al. [8] takes the theoretical order of convergence of the numerical solution as
an input. Our experiences show that the asymptotic order of convergence of a numerical
solution may depend not only on the numerical discretization scheme, but also on the type
of grid employed in the computation. Hence, no theoretical order of convergence exists
for a numerical solution. The least squares approach proposed by Eça and Hoekstra [4]
improves the reliability of the estimation, although it is not always the best choice. We
believe that the best extrapolation procedure is a procedure that adjusts itself to the
data. In the extrapolation procedure employed in the present study, more than 4 grids
are necessary but 5-6 grids are recommended. The apparent order of convergence for
each successive grid triplets is determined by using the Richardson extrapolation with
unknown exponent. The choice of the final extrapolation method and the selection of
data set used for the extrapolation will depend on the behaviour of the apparent order
of convergence thus obtained. To be able to observe the variation of the observed order
of convergence, at least 5 grids are required. An abrupt variation of the apparent order
of convergence gives evidence of data scattering. In this case, the least squares approach
based on one term Taylor series expansion with unknown exponent will be employed.
Unless some coarse grid results are too coarse to be included, all available data are used
for the extrapolation. When the observed order of convergence is almost the same for
all grid triplets, the extrapolated result using the finest grid triplets is considered as the
most appropriated estimation. Extrapolation method based on two terms Taylor series
expansion with fixed exponent may be employed when the variation of the observed order
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of convergence is regular but not nearly constant, or if the value is too far from the
expected one. An example given in the following section will better illustrate how this
self-adaptive approach is applied.

3 Numerical setup in OpenFoam

The steady incompressible solver SimpleFoam (version 1.4-1) has been used for the com-
putation. Gradient is computed with the Gauss linear scheme. Laplacian operator is
discretized with the Gauss linear corrected scheme, while the convection operator is han-
dled with a Self-Filtered Central Differencing scheme. Surface normal gradient contains
an explicit non-orthogonal correction. Linear scheme is employed for interpolation. The
global convergence criterion is set to 1e-10 for all quantities. At each iteration, we try to
reduce the residual of each linear system by a factor of 1000 unless the global convergence
criterion is satisfied. Bi-conjugate gradient solver is used to solve the transport equation
(PBiCG) and the pressure equation (PCG). An under-relaxation factor of 0.25 is applied
to all quantities. Non-orthogonal correction in SIMPLE algorithm is not applied since
one mesh is orthogonal, and the other is nearly orthogonal. However, one should stress
that fully converged solution can not be obtained for all test cases.

4 Application to a backward facing step test case

The procedure described above is applied to a backward facing step test case. It is the
configuration investigated experimentally by Driver and Seegmiller [3] with zero top-wall
angle. The Reynolds number based on the step height, noted h hereafter, and the max-
imum velocity at the inlet is 50000. The channel height at the inlet is 8h. This test
case has been chosen for the two workshops devoted to CFD uncertainty analysis held in
Lisbon in 2004 and 2006 [5] [6]. The computational domain started at 4h before the step
where inlet profiles for the streamwise velocity component and the turbulent quantities
are prescribed by using an initialization program provided by the Lisbon workshop or-
ganizers. The Spalart-Allmaras model [7] is employed for turbulence modelization. The
computational domain is extended to 40h after the step where zero value is imposed to
the pressure, while Neumann boundary conditions are applied to other quantities.

4.1 Mesh for different test cases

Two different grid sets are employed. The first one (test case A) is a Cartesian grid (Figure
1). A block-structured grid is employed for the test case B. With such a block-structured
topology, grid resolution in the region around the upper corner of the step is clearly not
sufficient.

4.2 Uncertainty estimation

The target region is a rectangular domain defined by (0.05≤x≤8, 0.05≤y≤1.5). It is
covered by a 200×100 uniform test grid. Uncertainty estimation is performed with the
procedure described in the previous section.
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Figure 1: Mesh for different test cases.

Test case A, Cartesian grid

Cartesian grid is employed for this test case. Five grids have been employed for the
computation. Number of grid points as well as the solution difference for each grid is
displayed in table 1. Results of Richardson extrapolation are shown in table 2. Conver-
gence is observed only for the finest grid triplet. Other results shown in this table are the
results obtained with a polynomial approach using a first and a second order term. We
retain the result obtained with the finest grid triplet. The estimated L1 norm error for
the finest grid is Err1=0.0232. A safety factor Fs=1.25 is applied. Uncertainty level may
be under-estimated with this choice, since using the result of polynomial approach will
increase the uncertainty by about a factor of 1.7.

Grid ID Case A Case B
Grid 1 0 /28512 0 /121582
Grid 2 3.007E-3/22528 8.057E-3/77118
Grid 3 6.888E-3/17248 2.041E-2/47838
Grid 4 1.058E-2/12672 3.565E-2/30002
Grid 5 1.397E-2/ 8800 5.601E-2/19110

Table 1: Solution difference and number of grid cells for different test cases
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Grid set Case A Case B
5-4-3 -0.0373/ - -0.0188/ 1.4
4-3-2 -0.0510/ - -0.0382/ 1.0
3-2-1 -0.0232/ 1.0 -0.0180/ 1.6
5 to 1 -0.0402/ - -0.0252 1.3
4 to 1 -0.0394/ - -0.0259/ 1.2

Table 2: Richardson extrapolation results for different test cases

Test case B, block-structured grid

Five block-structured grids are used for the computation. Due to data scattering, a least
squares approach is the only choice since there is no particular reason to exclude any data.
All available solutions are employed for the extrapolation. The estimated L1 norm error
for the finest grid is Err1=0.0252. The observed order of convergence is 1.3, which is
much lower than the expected second order accuracy. In spite of a low observed order of
convergence, we consider that the extrapolation is reliable. Hence a safety factor Fs=1.25
is applied.

Comparison between different test cases

The estimated L1 norm error and the apparent order of convergence for the two cases
are shown in figure 2. It can be observed that the two coarsest grids of the Cartesian
grid set containing 8800 and 12672 cells, respectively, are too coarse to be included in
the uncertainty estimation. The convergence behavior of the multi-block structured grid
is good with an order convergence similar to what we obtained with our code using the
same grid set, much lower than the expected theoretical second order convergence. As
the present approach can give correct estimation to the order of convergence only when
a monotonic variation of the solution on different grid is observed, such a low observed
order of convergence may due to non-monotonic variation of the solution on different grid
in some region. By retaining the points on which monotonic variation is observed in the
evaluation, the observed order of convergence with the finest grid triplet is 1.6 and 1.75,
respectively, for the Cartesian grid and the multi-block structured grid. These values are
closer to the expected second order convergence.

4.3 Uncertainty self consistency check

In this section, the uncertainty estimation is compared for the two test cases to see if the
error bars overlap. The solution differences with respect to the test case A together with
the uncertainty level are compared at three different locations x=1h, 4h and 7h in figures
3, 4 and 5 respectively. In general, both solutions overlap very well at all locations.
The level of numerical uncertainty is about 0.5%, which is acceptable for engineering
application. This observation suggests that the use of the finest grid triplet and a safety
factor of 1.25 is an appropriate choice.
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Figure 2: Estimated L1 norm error and order of convergence
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Figure 3: Uncertainty self consistency check at x=1.

5 Conclusion

Results obtained with OpenFoam for the backward facing step test case using two differ-
ent grid sets are analyzed in this paper. Two results agree well within the uncertainty
range. In another paper presented in this workshop [9], the author demonstrates that
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Figure 4: Uncertainty self consistency check at x=4.
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Figure 5: Uncertainty self consistency check at x=7.

the non-overlapping results obtained with the two grid sets employed in this study us-
ing our in house code were related to the wall normal distance computation rather than
discretization error or coding error. With OpenFoam, the expected second order conver-
gence cannot be obtained, even with the Cartesian grid set, which is very surprising. This
observation, which has to be confirmed by other expertised users, suggests that second
order convergence with OpenFoam computation is difficult to achieve for engineering ap-
plication, even in a computation for demonstration purpose. Such kind of convergence is
unlikely possible to obtain without a carefully designed grid with appropriate refinement.
However, numerical uncertainty on the velocity field can be reduced to about 0.5% with
reasonably refined grid, which is satisfactory for engineering application.
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