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Two Reynolds-averaged Navier-Stokes computer codes – one unstructured and one structured – are applied
to two workshop cases for the purpose of uncertainty analysis. The Spalart-Allmaras turbulence model is em-
ployed. The first case uses the method of manufactured solution and is intended as a verification case. In other
words, the CFD solution is expected to approach the exact solution as the grid is refined. The second case is a
validation case (comparison against experiment), for which modeling errors inherent in the turbulence model
and errors/uncertainty in the experiment may prevent close agreement. The results from the two computer
codes are also compared. This exercise verifies that the codes are consistent both with the exact manufactured
solution and with each other. In terms of order property, both codes behave as expected for the manufactured
solution. For the backward facing step, CFD uncertainty on the finest grid is computed and is generally very
low for both codes (whose results are nearly identical). Agreement with experiment is good at some locations
for particular variables, but there are also many areas where the CFD and experimental uncertainties do not
overlap.

I. Description of the Computer Codes

FUN3D1–3 is a finite-volume RANS solver (either compressible or incompressible equations can be solved) in
which the flow variables are generally stored at the vertices of the mesh. FUN3D solves the equations on mixed el-
ement grids, including tetrahedra, pyramids, prisms, and hexahedra and also has a two-dimensional path. It employs
an implicit upwind algorithm in which the inviscid fluxes are obtained with a flux-splitting scheme. At interfaces
delimiting neighboring control volumes, the inviscid fluxes are computed using an approximate Riemann solver based
on the values on either side of the interface. For second-order accuracy, interface values are obtained by extrapolation
using gradients computed at the mesh vertices using an unweighted least-squares technique. Limiting of the recon-
structed values may be employed for flows with strong shocks. For all results presented in this paper, the convective
flux scheme used is Roe’s flux difference splitting.4 For tetrahedral meshes, the full viscous fluxes are discretized
using a finite-volume formulation in which the required velocity gradients on the dual faces are computed using the
Green-Gauss theorem. On tetrahedral meshes this is equivalent to a Galerkin type approximation. For non-tetrahedral
meshes, edge-based gradients are combined with Green-Gauss gradients, which improves the h-ellipticity of the op-
erator, and the complete viscous stresses are evaluated. The solution at each time-step is updated with a backward
Euler time-differencing scheme. At each time step, the linear system of equations is approximately solved with either
a multi-color point-implicit procedure or an implicit-line relaxation scheme.5 Local time-step scaling is employed to
accelerate convergence to steady-state. FUN3D is able to solve the RANS flow equations, either coupled or uncou-
pled with the Spalart-Allmaras6 (SA) one-equation turbulence model. The Menter SST Model7 is also available for
uncoupled solutions. In this paper all computations are uncoupled and use the SA model. By default, the turbulence
advection terms are discretized using first-order upwinding.

An emerging capability in FUN3D is the ability to solve with a cell-centered discretization instead of node-
centered. Although this capability is not fully production-ready at this time, some preliminary results will be shown
for the manufactured solution. Also, in these cell-centered solutions, the turbulence advection terms are discretized
with a conservative second-order accurate scheme.

CFL3D is a structured-grid upwind multi-zone CFD code that solves the generalized thin-layer or full Navier-
Stokes equations.8 For all results in this paper, the full Navier-Stokes equations have been employed. The code
can use point-matched, patched, or overset grids and employs local time-step scaling, grid sequencing and multigrid
to accelerate convergence to steady stage. A time-accurate mode is available, and the code can employ low-Mach
number preconditioning for accuracy in computing low-speed steady-state flows. CFL3D is a cell-centered finite-
volume method. It uses third-order upwind-biased spatial differencing on the convective and pressure terms, and
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second-order differencing on the viscous terms. Roe’s flux difference-splitting (FDS) method4 is used to obtain fluxes
at the cell faces. The solution is advanced in time with an implicit approximate factorization method. A wide variety of
eddy-viscosity turbulence models are available in the code, including nonlinear models. Only SA has been used in this
study. Cross-derivative terms are ignored in the turbulence model. The turbulence models are solved uncoupled from
the mean flow equations, and, unless otherwise specified by the user, are solved with first-order upwind turbulence
advection terms.

II. Discretization Uncertainty Estimation

The current procedure for the estimation of discretization uncertainty is based on the grid convergence index (GCI)
from Celik et al.9 The GCI on the fine grid is given by:

GCI21 =
1.25e21

a

(r21)p − 1
(1)

where

e21
a =

∣∣∣∣φ1 − φ2

φ1

∣∣∣∣ (2)

andφ1 is the quantity of interest on the finest grid,φ2 is the quantity of interest on the next-finest grid,r21 is the ratio
of cell spacing from one grid to the next, andp is the order of accuracy of the method.

In the current paper, the grids are all structured (solved as mixed-element type hexahedra in the unstructured code),
and successively coarser levels are constructed by removing every other grid point in each coordinate direction. Thus,
r21 = 2 for all results herein. When three grid levels are available andr21 = r32 = 2, the orderp is computed from:

p =
1

ln(2)
(ln(ε32/ε21)) (3)

whereε32 = φ3 − φ2 andε21 = φ2 − φ1. When the quantityε32/ε21 < 0, the convergence is said to be “oscillatory,”
and when|ε32| < |ε21| the sequence is “divergent.” In either case, eq. (3) no longer applies.

The discretization uncertainty,U , of the solution on the fine grid is defined by:

U = GCI21|φ1| (4)

However, as Eca and Hoekstra10 point out, if p < 1, uncertainty estimates tend to be over-conservative, and, forp
much higher than the theoretical order of the method, the uncertainty estimates can be unreliable. Therefore, we adopt
the following methodology for estimating the uncertainty (some of these ideas are from Eca and Hoekstra):

• For0.95 ≤ p < 3.05, U = GCI21|φ1|

• For0 < p < 0.95: U = min(GCI21|φ1| , 1.25∆M )

• Forp ≥ 3.05: U = max(GCI∗21|φ1| , 1.25∆M )

where∆M is the maximum difference in absolute value between theφi on any of the three grid levels used to determine
p, andGCI∗21 is the same as eq. (1) except thatp is taken to be3:

GCI∗21 =
1.25e21

a

(r21)3 − 1
(5)

For oscillatory convergence, the uncertainty is taken as:U = GCI∗∗21|φ1|, where a presumed order of conver-
gencep = 2 is assumed, and a higher factor of safety is employed (2.5 as opposed to1.25):

GCI∗∗21 =
2.5e21

a

(r21)2 − 1
(6)

For divergence (|ε32| < |ε21|), the uncertainty is taken asU = 3∆M .
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III. Manufactured Solution

The manufactured solution used is the same as that described as MS1 in Eca et al.11 for flow on a square domain
0.5L ≤ x ≤ L and0 ≤ y ≤ 0.5L, namely:

u/uref = erf(η) (7)

v/uref =
1

σ
√

π

(
1− e−η2

)
(8)

p

ρu2
ref

= 0.5ln(2x− x2 + 0.25)ln(4y3 − 3y2 + 1.25) (9)

ν̃ = ν̃max

√
2ηνe0.5−η2

ν (10)

whereη = σy/x, σ = 4, ην = σνy/x, σν = 2.5σ, andν̃max = 103ν. The Reynolds numberRe = urefL/ν = 106.
The variablẽν is the turbulence variable from the SA model, which is related to the eddy viscosityνt via νt = ν̃fv1,
wherefv1 = (ν̃/ν)3/[(ν̃/ν)3 + 357.911].

Note that FUN3D can be run using incompressible equations, but CFL3D is only a compressible code. When
solving the compressible equations, an additional exact solution variable of constant total temperature everywhere in
the domain was specified, based on an assumed freestream Mach number of 0.2. Also for the compressible equations
it was necessary to scaleu, v, andp appropriately.

Although not shown, the codes were also run using the MS2 and MS4 exact solutions, but in these cases the
turbulence variable could be driven negative very near the wall over a portion of the domain. This behavior is possibly
a result of the fact that these turbulent exact solutions have an asymptotic behavior near the wall that is dramatically
different from the generally accepted behavior12,13of νt ∝ y3. In fact, for MS2:νt ∝ y8, and for MS4:νt ∝ y16. For
MS1 the behavior is more reasonable:νt ∝ y4. In Eca et al.11 special handling of the turbulence manufactured source
term helped to avoid numerical difficulties; in FUN3D and CFL3D no such special handling was performed.

It should also be pointed out here that the SA model used in FUN3D and CFL3D has minor differences from that
employed by Eca et al. In particular, Eca et al. leave out the termft2, which is a part of the model as specified in
Spalart and Allmaras:6

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= cb1(1− ft2)Ŝν̃ −

[
cw1fw −

cb1

κ2
ft2

] (
ν̃

d

)2

+
1
σ

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(11)

where

ft2 = ct3exp
(
−ct4χ

2
)

(12)

Leaving out theft2 term has a minor influence on the solution behavior. We include theft2 term into our source
terms defining the SA exact solution. Also, in FUN3D and CFL3D, an important computational limit is placed on
the variabler (which goes into the computation offw). The variabler should remain positive to keep the solution
well-behaved:

r =
ν̃

Ŝ∗κ2d2
(13)

where

Ŝ∗ = max
(
Ŝ, ε0

)
(14)

Ŝ = Ω +
ν̃

κ2d2
fv2 (15)

andε0 is a very small positive number. It was noticed for MS1 that ifŜ is not clipped for eq. (13), the forcing term
becomes unbounded at the locations wherer passes through zero.

For the manufactured solution, the exact solution was specified along the left, top, and right boundaries for FUN3D
(node-centered) and in two rows of ghost-cell centers for CFL3D. For FUN3D (cell-centered), the exact solution and
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gradient for the viscous terms were specified along these boundaries. The bottom wall used standard no-slip boundary
conditions, with∂p/∂n = 0 (and, for compressible flow, either∂T/∂n = 0 in CFL3D orT = constant in FUN3D).
The turbulence variablẽν at the wall was set to zero.

Two sets of stretched grids were used. The first set, termed “sg1,” had a fine grid size of577× 577. Spacing was
uniform in thex-direction (∆x = 0.00086806), and was stretched in they-direction. The first grid point off the bottom
wall was aty = 4.3403 × 10−5. A total of 5 nested grid levels were employed:577 × 577, 289 × 289, 145 × 145,
73× 73, and37× 37. The second grid set, termed “sg2,” had a fine grid size of289× 1153. Spacing was uniform in
thex-direction (∆x = 0.00173611), and was stretched in they-direction. The first grid point off the bottom wall was
at y = 1 × 10−6. A total of 5 nested grid levels were employed:289 × 1153, 145 × 577, 73 × 289, 37 × 145, and
19× 73.

To determine the discretization error, the exact manufactured source terms were added to the Navier-Stokes equa-
tions, and the codes were converged to near machine-zero (10−14) residuals. Various integral and point quantities were
compared with the exact solution.

Fig. 1 shows error in drag (from the exact solutioncd = 16ln(2)ν/
√

π = 6.25706270620 × 10−6) for results on
sg1 using the two codes with both first- and second-order turbulence advection terms. The “(cc)” indicates that the
cell-centered version of FUN3D was used for one of the runs. In this plot,N represents the total number of degrees of
freedom (e.g., number of cell-centers or grid points), so

√
1/N is a measure of the average grid spacingh. All results

for this integral quantity converge to the exact solution with second-order behavior on the finest grid levels. Note that
when using the compressible equations, it is necessary to remove the effect of variable density when post-processing
drag to compare with the exact solution specified for incompressible flow.

It is important to note that although the absolute value of errors in drag coefficient are monotonically decreasing,
the actual drag levels do not exhibit monotonic convergence until the finest three grid levels. This can be seen in Fig. 2.
Thecd, GCI, and uncertainty on the finest grid level are listed in Table 1.

Table 1. Thecd and its uncertainty on the finest grid for MS1 on sg1

Code Turbulence advection order cd approx GCI, % U(cd)
CFL3D 2nd 0.644531× 10−5 3.05 0.196577× 10−6

CFL3D 1st 0.638512× 10−5 4.26 0.271690× 10−6

FUN3D 2nd 0.644844× 10−5 5.09 0.327975× 10−6

FUN3D 1st 0.637872× 10−5 7.67 0.489037× 10−6

Figs. 3 and 4 show L1-norm errors for various quantities, using second-order and first-order discretization for
turbulence advection, respectively. In Fig. 3, convergence is second-order for all quantities, as expected. For Fig. 4,
convergence degrades to first-order. Results on the sg2 grid (with finer normal spacing) are given in Fig. 5. Again,
when the turbulence advection terms are discretized second-order, the global error norms for all quantities converge
second-order. It should be noted in practice, however, that for most aerodynamic problems of interest, little practical
influence of first-order treatment of the turbulence advection terms has been found using typical grids.

Fig. 6 shows the convergence of various flow field quantities at a specific location in the domain as a function of
h both grid sets. Both codes are approaching the exact solution, with the sg2 series of grids generally converging in a
“smoother” fashion than the sg1 series. Note that in some cases, the convergence is oscillatory (non-monotonic), even
on the finest grid levels.

IV. Backward Facing Step Validation Case

The backward facing step case was run on the same series of hexahedral grids in both codes. Only the node-
centered formulation of FUN3D was employed, and both codes were run using first-order discretization for turbulence
advection. The finest grid consisted of255, 266 grid points (253, 952 cells), with minimum spacing at the bottom and
top walls of1.5 × 10−4. This spacing yielded an approximate averagey+ at the first cell-center of about0.25 on the
finest grid. The grid wasnotclustered with viscous spacing along the back face of the step, however: minimum spacing
there was0.0208333. Successively coarser grids were constructed by removing every-other point in each coordinate
direction. Fig. 7 shows the grid 3-levels-coarser than the finest grid (with only3968 cells). The grid clustering from
the upstream near-wall region continued into the shear layer, with some spreading.
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All solid walls were solved as no-slip walls. In CFL3D these were treated as adiabatic, whereas in FUN3D they
were given a constant temperature equal to the freestream adiabatic temperature. At the upstream boundary, the
velocity and turbulence were specified according to the manufactured solution given by the workshop organizers. At
the downstream boundary, pressure was specified (p/pref = 1.00149), and all other variables were extrapolated from
the interior of the domain.

Convergence of various surface integral quantities with decreasing grid spacingh (=
√

1/N ) is shown in Fig. 8.
These drag coefficients are defined in the standard way, as a force divided byq∞Sref , whereq∞ = 1/2ρ∞u2

∞. In
previous uncertainty workshops, e.g., Eca et al.,14 the drag forces were nondimensionalized without the1/2 factor in
the denominator. As a result, the current drag results are a factor of 2 larger than earlier reported results. Both codes
generally go to similar results as the grid is refined, although forcd,v on the bottom wall it is not clear whether the
results will cross or stay together if the grid could be refined further.

Estimates of the uncertainty are also shown for the finest two grid levels. These estimates are computed using
the methodology described earlier, using the grid level in question plus 2 coarser levels. Forcd,v on the bottom
wall, CFL3D is well-behaved with an apparent (approximately) second-order convergence, so its uncertainty levels
are small; FUN3D on the other hand is converging at less than first-order according to the finest three grids, so its
uncertainty for this quantity is higher. Forcd,v on the top wall, CFL3D exhibits oscillatory convergence, whereas
FUN3D is monotonically converging. Finally, both codes show well-behaved convergence and hence reasonable
uncertainty levels forcd, p. In this case, FUN3D appears closer to the grid-converged result on any given grid, so its
uncertainty levels are smaller than those of CFL3D.

The reattachment location is shown in Fig. 9. It appears that both codes will yield a reattachment point on an
infinitely-refined grid of approximately6.02.

Table 2 gives values for the various integrated quantities as well as the reattachment point on the fine grid, along
with the corresponding computed GCI and uncertainty.

Table 2. Various quantities and their uncertainty on the finest grid for backward facing step

Code quantity fine grid value approx GCI, % U(cd)
CFL3D cd,v bottom wall 0.0523858 0.07 0.342654× 10−4

cd,v top wall 0.0944691 0.57 0.538355× 10−3

cp step 0.2010955 2.45 0.491621× 10−2

reattachment 6.01137 0.26 0.0154735
FUN3D cd,v bottom wall 0.0523199 2.69 0.140690× 10−2

cd,v top wall 0.0940830 0.65 0.609768× 10−3

cp step 0.2061919 0.52 0.106451× 10−2

reattachment 6.06012 0.70 0.0422834

Figs. 10, 11 and 12 show comparisons of wall pressure coefficient and skin friction coefficient with experiment.
Fine grid results along with error bars for both CFD and experiment are shown. Results for the two codes are almost
indistinguishable, but agreement with experiment is only marginal along the bottom wall. In particular,Cp is too
low for CFD for x < 3, andCf is too low for CFD both over the first half of the bubble as well as downstream
of reattachment. Interestingly, the location for reattachment (whereCf passes through zero) appears to agree very
well with the experimental location. Although not everywhere completely within the experimental error tolerance, the
computed top wall pressure coefficients agree very well with experiment.

Finally, Figs. 13 - 21 show comparisons of profiles at 3 locations downstream of the step with experiment. Fine
grid results along with error bars for both CFD and experiment are shown. Again, results for the two codes are almost
identical. Generally speaking, computed results compare very well with experiment, with the notable exception of
v-velocity atx = 6H, which is underpredicted significantly by the CFD.

V. Conclusions

Two RANS computer codes – FUN3D and CFL3D – have been analyzed using the manufactured solution MS1,
then applied to a backward facing step computation and compared with experiment. For the manufactured solution on
the finest grids, the expected asymptotic behavior was observed: discretization error was either first- or second-order
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accurate, depending on the treatment of the turbulence advection term. Both codes converged appropriately to the
exact solution, although sometimes with oscillatory-convergence behavior. For the backward facing step, both codes
were again consistent with each other, in the sense that the solutions generally approached nearly identical results as
the grid was refined. Comparisons with experiment included uncertainty estimates for both CFD and experiment.
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Figure 1. Error in drag coefficient for MS1 on sg1 as a function ofh.

Figure 2. Drag coefficients for MS1 on sg1 as a function ofh, showing oscillatory convergence on the coarsest two grid levels for three of
the methods.
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Figure 3. L1-norm of errors in u, v, p, and ν̃ for MS1 on sg1 using FUN3D (cell-centered) and CFL3D, both with second-order discretization
for turbulence advection.

Figure 4. L1-norm of errors in u, v, p, and ν̃ for MS1 on sg1 using FUN3D (node-centered) and CFL3D, both with first-order discretization
for turbulence advection.
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Figure 5. L1-norm of errors in u, v, p, and ν̃ for MS1 on sg2 using FUN3D (cell-centered) and CFL3D, both with second-order discretization
for turbulence advection.
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Figure 6. Convergence of various flow field quantities atx = 0.6, y = 0.001 for MS1 on sg1 and sg2 using FUN3D (cell-centered) and
CFL3D, both with second-order discretization for turbulence advection.

Figure 7. Hexahedral grid for the backward facing step case (showing only every 8th point in each coordinate direction for clarity).
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Figure 8. Convergence of various surface integral quantities, including uncertainty estimates on the finest 2 grid levels.
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Figure 9. Convergence of reattachment location behind step, including uncertainty estimates on the finest 2 grid levels.

Figure 10. Surface pressure coefficient along the bottom wall, including uncertainty error bars for both CFD and experiment.
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Figure 11. Surface skin friction coefficient along the bottom wall, including uncertainty error bars for both CFD and experiment.

Figure 12. Surface pressure coefficient along the top wall, including uncertainty error bars for both CFD and experiment.
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Figure 13. Profiles ofu/uref at x = 1H, including uncertainty error bars for both CFD and experiment.

Figure 14. Profiles ofv/uref at x = 1H, including uncertainty error bars for both CFD and experiment.
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Figure 15. Profiles ofu′v′/u2
ref at x = 1H, including uncertainty error bars for both CFD and experiment.

Figure 16. Profiles ofu/uref at x = 4H, including uncertainty error bars for both CFD and experiment.
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Figure 17. Profiles ofv/uref at x = 4H, including uncertainty error bars for both CFD and experiment.

Figure 18. Profiles ofu′v′/u2
ref at x = 4H, including uncertainty error bars for both CFD and experiment.
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Figure 19. Profiles ofu/uref at x = 6H, including uncertainty error bars for both CFD and experiment.

Figure 20. Profiles ofv/uref at x = 6H, including uncertainty error bars for both CFD and experiment.

17 of 18



Figure 21. Profiles ofu′v′/u2
ref at x = 6H, including uncertainty error bars for both CFD and experiment.
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