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Comments on the Third Lisbon V&V Workshop 

 

Patrick J. Roache 

 

 The Lisbon III Workshop has been completed. Covering the full range of Code 

Verification, Calculation Verification, and Validation, the organizers and participants succeeded 

in maintaining the candor and camaraderie of the previous two Lisbon Workshops, while 

expanding the range and increasing the quality of the work. The ratio of discussion time to 

formal presentation time again approached unity, so that the Lisbon Workshops, unlike most 

“workshops,” lived up to the name. Congratulations go to all involved.  

 

 In spite of all the good discussion, there are a few fundamental points that need re-stating 

or expanding. I would like to take this opportunity to do so. 

 

Evaluation of Uncertainty Estimators for Small Samples 

 

 Several of the presentations and discussions described success, or at least promise of 

success, for new or modified U95% estimators, based on a handful of test cases. The published 

literature contains methods justified on one or two cases, including the ITTC method. What 

could this mean? If we agree that the target is U95%, i.e. an estimator that includes the actual error 

in roughly 95% of the cases, then we need to examine at least 20 cases to expect to find one for 

which the actual error is outside the U95% range. (Note this is not truly a “failure” because we do 

not want to pay the price of huge uncertainty estimates for ~100% coverage, including outliers.) 

Twenty cases would not be sufficiently large for dependable statistics; we would expect to need 

O(100) cases to have confidence in the claim of roughly 95% coverage (as emphasized in [1]). 

“Cases” do not necessarily mean separate fluid dynamics problems, but include multiple grid 

triplets for the same problem, but for a convincing evaluation of a method for general use we 

certainly need many fluid dynamics problems. 

 

 In spite of this, I believe that the small sample studies are valuable. The analysts are 

essentially using their intuition, based on extensive computational experience, to cautiously infer 

something about the U95% statistical coverage from the performance on a few cases. Suppose that 

we have just one case, and it is in some sense representative (i.e. not a singular problem, not a 

terrible grid, there are some points in the boundary layer and along the backstep, observed p is 

reasonable, etc.). If the U95% estimate is 20% while the actual error is 0.1%, we would at least 

hypothesize (if not conclude) that the estimator is far too conservative, even though we all know 

that we cannot do any statistics with a sample size of one. Conceivably, we might do 100 total 

cases and find that it is non-conservative in the other 99 cases. But we are not doing blind 

statistics uninformed by experience, and if such a study showed 99/100 cases were non-

conservative and 1/100 showed the estimator was far too conservative, we would surely re-

examine that case, expecting to find that a mistake was made. Similarly, if we examined 5 cases 

and two were non-conservative but only by a little (say, U95% estimator = 10% and actual error = 

11%) we would be encouraged, even though if this pattern later proved to be replicated for 1000 

cases, we would have verified not a U95% estimator but an inadequate U60% estimator. 
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 Although these small sample studies, combined with well-founded intuition, are valuable, 

the convincing statistical evidence can come only with hundreds of cases, on some range of fluid 

dynamics problems. (Alternately, one could perform the evaluation only for a limited range of 

problems of interest, e.g. drag of ship hulls, claim only this success, and leave it to someone else 

to evaluate the U95% estimator on other problems like airfoil lift, if that is their interest.) 

 

 With such statistically significant evaluations ultimately in mind, it seems to me ill-

advised to be introducing too many new parameters into the U95% estimators and fine tuning 

them on small sample studies. As I mentioned in the discussions, Dr. Jay Boris noted ironically 

in the 1980’s that there were so many variations possible on discretization algorithms that 

nobody ever needed to use the same algorithm twice. The same is obviously true of RANS 

turbulence models, with all their switches and knobs, tunable for each new problem. Researchers 

are creative, and we are now in danger of seeing the same situation for uncertainty estimators. 

However, as our organizers Eça and Hoekstra have pointed out, it is also true that excessively 

conservative uncertainty estimates that “jump” by a factor 3/1.25 = 2.4 due to noise around 

observed p ~ 0.95 or 2.05 are disconcerting and would probably not be used. For me, this is an 

unsatisfying state of our present methodology, but at least it only occurs for the most difficult 

problems. 

 

Exact Uncertainty? 

 

 What could “exact uncertainty” mean? In several presentations, when a U95% estimator 

was evaluated, its value was said to be compared to the “exact uncertainty” or “true uncertainty.” 

Actually, the authors (correctly) evaluated the U95% estimator to see if it contained the “exact 

error” or “true error” in each case of a small-sample study. It is easy for any of us to slip up on 

terminology, and momentary confusion of uncertainty and error is common. 

 

 But there is another sense in which we could compare an uncertainty estimator with an 

“exact uncertainty” provided that the definition of uncertainty used is that used in V&V 20 [2]. 

Contrasted to the AIAA Guide [3] and to the ASME V&V 10 [4] (Computational Solid 

Mechanics), which define uncertainty in nebulous terms that cannot be implemented 

quantitatively, V&V 20 [2] defines numerical uncertainty as the standard deviation of the parent 

population. So if we had a population of (say) 100 different cases and we could meaningfully 

compare all with the same normalized metric (say drag coefficient) and for each case we had a 

numerical error, then the exact or true numerical uncertainty for that population of 100 cases 

would be calculated easily and unambiguously as the standard deviation of those numerical 

errors. (Technically, it is the sample standard deviation.) 

 

Roughly 95% 

 

 If we predict a base drag coefficient to be 0.950 and an experiment gives 0.940, perhaps 

we would say that the prediction was close to acceptable. (Most people would say it was terrific.) 

But if we want roughly 95% coverage from an uncertainty estimator and we achieve “only” 94%, 

we do not say that it was merely close to acceptable. In fact, if it produced anywhere from 89% to 

99% coverage, I would be more inclined to declare it a victory for this study and move on to 



3
rd

 Workshop on CFD Uncertainty Analysis, Lisbon, October 2008 
 

 

3 

3 

other fluid dynamics problems, rather than fine-tune parameters or introduce new ad hoc 

functions.  

 

 

Richardson Extrapolation (RE) and the Asymptotic Range 

 

 We often heard during the Workshop that “Richardson Extrapolation only works in the 

asymptotic range”, “RE only works for monotonic convergence”, etc.  

 

 Only works for what? For error estimation, yes. But for use in uncertainty estimation, this 

is not true. The GCI based on RE (using either theoretical p, or observed over several grids) has 

been demonstrated to work (i.e. to provide roughly 95% uncertainty coverage) in hundreds of 

cases including many outside the asymptotic range and even with non-monotonic convergence. 

In the GCI, the absolute values around the RE error estimate and the Factor of Safety Fs >1 

“cover a multitude of sins”, to use an old expression. This is true even for Fs = 1.25, as in the 

work of the Terrassa group ([5]; see also [6]), which found GCI success for RANS turbulent 

axisymmetric flows even though as many as 1/3 of the nodes were converging non-

monotonically. If, as I have recommended, we use Fs = 3 for cases of non-monotonic 

convergence, the original GCI uncertainty estimator is more robust. If one of the Least Squares 

variants of GCI is used, it is even more robust, especially with Fs = 3, as Eça and Hoekstra 

observe. 

 

 Dr. C. J. Freitas and his group at the Southwest Research Institute (U.S.A.) have applied 

the original GCI to many realistic problems with far from ideal convergence behaviors with good 

results. These include [7]: confined detonation (see V&V 20 [2], Section 2), vortex cavitation, 

blast-structure interactions, fluidized beds, shock propagation,  structural failure, and turbulent 

multiphase flows, using FVM, FDM, FEM, ALE, and Riemann solvers. (Dr. Freitas intended to 

participate in this Workshop but his responsibilities and travel prevented it.) 

 

1/(r
p
 - 1), ε, and Data Range ∆M 

 

 The fine-grid error estimate E from (generalized) Richardson Extrapolation RE is given 

by [8] 

 

E1 = ε / (r
p
 - 1)  

 

where ε = (f2 - f1) is the change in the quantity of interest over the last two grid calculations. The 

important functionality that the RE analysis displays is 1/(r
p
 - 1). 

 

 Several of the uncertainty estimators used at the Workshop utilize as a substitute for ε the 

data range ∆M over a range of grids, somewhat subjectively defined as all the grids calculated, or 

those grids that seem to be in the acceptable range (also vaguely defined), or just the last two 

grids, in which case ε = ∆M . The data range is sometimes used as a substitute for E when the 

convergence behavior is poor (i.e. taking the uncertainty estimator as some Fs×∆M) and ε has 

been proposed as a candidate for the approximate error estimator itself. First, I observe that 
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perhaps only an ordered error estimator (with “efficiency factor” ~ 1 as defined by Hay and 

Pelletier in the Workshop) deserves to be called an error estimator in any practical engineering 

sense. Second, ε is not an ordered error estimator (nor is ∆M). This was emphasized in the 

Workshop by Deng and Visonneau, which I appreciate. Note that both ε and ∆M can be made 

(almost) arbitrarily small by choosing r close to unity, limited only by r = 1 + 1/N. My 

experience indicates that it is necessary to give a specific example to demonstrate just how 

serious this mistake can be. Consider a well behaved problem with p = 1, and a 100
D
 grid. 

Calculate the change in the solution ε for a change in the grid to 99
D
. (I know that this is not 

practical for turbulent flows, but it can be done in principle, and in fact I have done it for Burgers 

equation in [8], page 124, and I want to make a point.) The Richardson Extrapolation shows that 

the ordered error estimate is  

 

 ε /[r
p
 - 1] =ε / [(100/99) - 1] = ε / [0.010101...] = 99 ×ε 

 

So ε alone is unconservative by a factor of 99. Some estimator !  

 

 Since,  for a given grid solution, we can make ε (almost) arbitrarily small regardless of 

the accuracy attained on that grid, how could ε deserve the dignity of the term “error estimator” 

or “approximate error”? Therefore neither ε nor ∆M generally will work asymptotically as an 

error estimator, and we may expect that Fs×ε or Fs×∆M generally will not work well 

asymptotically as an uncertainty estimator. 

 

 I want to be clear that I do not have a problem with using the data range ∆M as a 

substitute of ε; for these problems, it is clearly an improvement. The problem I have is in taking 

either ε or the data range ∆M to be an ordered error estimator by neglecting the term 1/(r
p
 - 1). 

One may protest that, for these anomalous behavior problems, we do not know (or trust) p. True, 

but at least we know r, and we are throwing away this knowledge if we substitute just ∆M (or 

worse, just ε) for the ordered error estimate E. In fact, we are implicitly making an unjustified 

optimistic assumption about p. By taking the uncertainty estimator E to be Fs×ε  or Fs×∆M, we 

are assuming 1/(r
p
 - 1) ~ 1.  This means we are assuming that r

p
 ~ 2. If our grid refinement factor 

r ~ 1.4 then we are effectively using p ~ 2. This is not good! If we do not know or trust p, 

perhaps we could at least assume p = 1, which would , for r ~ 1.4, introduce another scaling 

factor of ~ 1 / 0.4 = 2.5 compounded with whatever Fs we decide to use. Maybe even p = 1 is too 

optimistic, but it is surely more realistic than p = 2, giving a factor 2.5 vs 1 in the realistic case of 

r ~ 1.4. (Assuming p = 0.5 would be far too pessimistic and unpalatable for most users.) This 

neglected term is more important for smaller r, e.g. r = 1.3 minimum recommended by the new 

ASME JFE policy [9]. 

 

 Then we also must ask, Why does it appear that Fs×ε works well as an uncertainty 

estimator in the Workshop paper of Hay and Pelletier using the solution-adaptive grid code 

CADYF?  

 

 Asymptotically, the ordered error estimator E ~ ε only if 1/(r
p
 - 1) ~ 1 or r

p
 ~ 2. For 

example, grid doubling with a first-order method gives (r
p
 - 1) = 1 and E = ε. Likewise for a 

second-order method with r ~ 1.414. For the finest two grids using CADYF, the adaptive grid 
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refinement algorithm produced near equidistribution of error estimates. Each subsequent grid 

refinement level is chosen to provide approximately a pre-set fractional reduction ς < 1 in the 

error, and ς = [0.6, 0.8] are used. An assumed one-term power series expansion for discretization 

error shows that a reduction in E by a factor ς indicates r
p
 = 1/ ς (regardless of the individual 

values of r and p) so that ς  = 0.6 produces 1/(r
p
 - 1) = 1.5. Thus the Fs = 3 used by Hay and 

Pelletier is effectively Fs = 4.5 (for the last two adaptive grids) and is quite conservative, even 

more so for ς = 0.8 (which gives effective Fs = 12). If the actual error reduction was somewhat 

better than the nominal or targeted ς  = 0.6, it would make the process less conservative; ς = 0.5 

would produce E = ε. So the good performance of the CADYF uncertainty estimator is not due to 

the fact that ε ~ E in general, but only for the particulars of the refinement, as recognized by the 

authors (end of their section 3). In any case, it is a pleasure to see the Fs approach successfully 

applied to the ZZ and Wiberg error estimators to obtain uncertainty estimates. 

 

 Although oscillatory convergence obviates the use of direct (non-Least-Squares) 

calculations of p from successive grid triplets, and contradicts the assumptions of the one-term 

power series representation of discretization error, it seems intuitive that the term 1/(r
p
 - 1) might 

still represent the convergence scaling of the envelope of the oscillatory convergence, and could 

be applied to ∆M  in the GCI.  It would be interesting to examine this premise using a two-term 

power series representation, since Roy [10] has shown that this can explain one cause of 

oscillatory convergence for mixed-order discretizations (i.e. the common first-order advection 

and second-order diffusion). In any case, we know it works, very often, in empirical tests. And in 

the limit, if convergence becomes monotonic, it certainly provides an ordered error estimate E, 

which ε or ∆M alone does not. (This also applies to the AES estimator of Celik and colleagues 

(Elizalde-Blancas et al.) in this Workshop; but their use of a global “proportionality constant c”, 

which takes the place of  1/(r
p
 - 1), gives some improvement.) Even if ε or ∆M alone “works” 

with some Fs for some grid range, surely there is no inherent value in not being an ordered error 

estimator, as Deng and Visonneau would agree. RE works for error estimate E in the best cases; 

there is no advantage in replacing it with an ad hoc prescription that does not work even in the 

best cases. 

 

 My original GCI paper emphasized the importance of the scaling contained in the term 

1/(r
p
 - 1). Rather than 95% coverage, the original target of the scaling was to re-normalize the ε 

obtained from studies with various r and p for comparison to the ε that would be obtained from a 

grid doubling with a second-order method, i.e. r = 2, p = 2. (The title of the paper was “A 

Method for Uniform Reporting of Grid Refinement Studies.” See [8].) My own elicitation of 

expert opinion from O(200) CFD practitioners had indicated that ε from a grid doubling with a 

second-order method provided a practical level of confidence. (Only after analysis was it shown 

that this corresponded to Fs = 3, which corroborated the expert opinion.) For example, without 

any quantitative claims for 95% coverage or 99% coverage, how would we compare two studies 

of the same problem if one study used r = 1.5, p = 1 and produced ε = 3%, and another study 

used r = 2, p = 2 and produced ε = 6%? Which solution would be more dependable? The scaling 

alone (without deciding on Fs) shows that the ε for the first case should be scaled to 18% to 

compare with the 6% of the second case. Whatever level of coverage is intended, and whatever 

Fs is used, the 1/(r
p
 - 1) scaling is critical for the reporting. 
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Error estimation from a grid triplet without explicit evaluation of p  

 

 We would all like to avoid assuming a power series for the convergence, or using Taylor 

series, in order to be more general. But it seems to me that any general method which one hopes 

to apply to difficult cases ought to work on the well behaved cases first. When the problem is 

well behaved, the Taylor series or power series works well.  

 

 The AES method of Elizalde-Blancas et al. in this Workshop utilizes the idea that the 

extrapolation to fexact can be accomplished (in some cases) without explicitly evaluating observed 

p. Following their approach, but assuming a well behaved problem with constant r and p, the 

procedure for Richardson error estimate E1 leads to an interesting result. E1 for the fine grid 

solution f1  and E2 for the medium grid solution f2 are taken from page 112 of [8], using the 

dimensional form of Eqs. 5.4.2 and 5.4.3, as 

 

(A) E1 ≡ f1 -fexact  = [f2 - f1] / [r
p
 - 1] 

 

(B) E2 ≡ f2 -fexact  = [f3 - f2] / [r
p
 - 1] 

 

Subtracting (A) from (B) leads to  

 

(C) 1/[r
p
 - 1] = [f2 - f1] / [f3 - 2f2 + f1] 

 

Comparing this to Elizalde-Blancas et al. shows it is equivalent to their Eq. 4 with their  

 

(D) C = 1/[r
p
 - 1]. 

 

(It is not equivalent to their Eq. 5.)  Eq. C leads to a nice formula for the error estimation that 

does not involve r or p (although this could be misleading, since constant r and p are necessary 

requirements). Using C in A gives 

 

(E) E1 = [f2 - f1]
2
 / [f3 - 2f2 + f1] 

 

Using the ε notation (Eq. 5.4.3 of [8], dimensional) with  

 

(F) ε21 = f2 - f1 and ε32 = f3 - f2  

 

then E becomes 

 

(H) E1 = ε21
2
 /  [ε32 - ε21] = ε21 /  [(ε32 / ε21) - 1] 

 

The latter form is better behaved for round-off error, and allows a confidence check to see if the 

results are consistent with expected convergence behavior. In the usual method, the observed p is 

compared to the theoretical p. As stressed by Hoekstra at the Workshop, agreement for a single 

grid triplet is no guarantee of monotone behavior, but it is comforting, and more confidence is 
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built with more grid triplets. In the present approach, we would look for [(ε32 / ε21) - 1] ~ [r
p
 - 1] 

using known r and expected (theoretical) p. 

 

 I have tested Eq. H on synthetic problems, for which it is exact, and for practical 

problems given in [8] on pages 164, 177, 181. For the very well behaved first problem on page 

177, the method gives a factor of 2.956 when the assumed r = 2 and p = 2 would give a factor of 

3. The GCI calculation with p = 2 shows that the GCI ratio (for r = 2), which should = 4 for these 

assumptions, is actually 3.95. So both the GCI calculation with explicit evaluation of p, and Eq. 

H, are consistent with observed p just slightly less than 2. For the airfoil problems on page 164 

(turbulent flow) and page 181 (inviscid), the convergence behavior is noticeably not ideal but 

fairly well behaved, and the p - free extrapolation seems to work as well as the usual method with 

explicit evaluation of p. 

 

Quality Validation Experiments 

 

 Quality validation experiments are rare. The backstep problem of Driver and Seegmiller 

[11] used in the Workshop is often cited as an example of high quality experimental work, yet we 

discovered upon careful reading that there was no measurement of inflow boundary layer 

properties at the upper wall, and no experimental uncertainty given for the time-averaged 

velocity components or Reynolds stresses. When the V&V 20 [2] project was begun, it was 

intended to use real experimental data on a heat exchanger for the example end-to-end problem 

of the document. No adequate experiment, with thorough measurement of inflow and outflow 

values and uncertainties, could be found. Instead, synthetic experimental values were used to 

illustrate the V&V procedures. The follow-on document to V&V 10 [4] (Computational Solid 

Mechanics) is now in development. The original intention was to use real experimental data for a 

simple structural problem, but no adequate experiment could be found; instead, synthetic 

experimental values will be used. The ASCE V&V document for free surface flow V&V [12] has  

plenty of real experimental data, ranging from laboratory scale to site scale (e.g. sections of the 

Mississippi River, San Francisco Bay), but uncertainty statements are rare. In a 5-day Workshop 

on Combustion Modeling [13] held in Pittsburgh in February 2006, only one experimental paper 

(on stationary gas turbines at NSF) had complete description of inflow properties - not 

uncertainties, just measurements of the inflow properties. In a 5-day workshop [14] on Nuclear 

Reactor modeling held in Idaho in July 2008, only one paper had any experimental uncertainty 

estimates; this work by Dr. H. McIlroy and colleagues [15] is an exceptionally high quality PIV 

(particle image velocimetry) experiment designed expressly for CFD validation, with complete 

field measurements (including inflow) and complete uncertainty measurements. It is so rare as to 

be perhaps singular for these flows. The benchmark study for validation experiments in 

aerodynamics remains Aeschliman and Oberkampf [16]. The great majority of experimental 

works not only fail to report experimental uncertainties but fail to measure all pertinent inflow 

quantities, so that results could not be compared with other experiments - forget CFD. 

Uncontrolled, unmeasured experiments are the norm, and experimental work is the weakest link 

in V&V. 
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Uval vs. Error Bars 

 

 Only two of the Workshop papers actually calculated and interpreted Uval following the 

abbreviated V&V 20 procedure as described in the Workshop announcement. The interpretation 

this enables is an improvement over just plotting computations with their uncertainties and 

experiments with their uncertainties, as done in the remaining papers. However, just this “error 

bar” approach is a huge improvement over typical CFD validation reporting. Both the Uval and 

the error bar presentations are valuable for interpreting model fidelity, and in fact, if I could have 

only one, I would want the error bar presentation. But it is little trouble to produce both, and I 

hope to see more acceptance of this approach among Workshop participants and their colleagues, 

as well as the general CFD community. 

 

Final Comment 

 

 The Lisbon III Workshop was a worthy finale to the series. When I told a colleague, a 

well-known experimentalist, that the ratio of discussion time to presentation time approached 

unity, he gasped in disbelief and envy. Equally important is the immeasurable quality of the 

interactions. I feel privileged to have participated in all three Lisbon V&V Workshops, and I 

cherish the resulting relationships. My congratulations and gratitude go to our organizers, Luis 

Eça and Martin Hoekstra. 
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