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1 Introduction

This paper introduces, presents and analyses the results from the Ecole Polytechnique de Montréal
team for the two exercices of the Second Workshop on Uncertainty Analysis - Lisbon 06. We assume
that the reader knows the details of test cases described in the Workshop proposal. They are not
reproduced here for the sake of brevity. Only the boundary conditions will be given since some of
them were left for the user to choose. We focus on presenting the CADYF flow solver, the h-adaptive
procedure and the numerical error estimation techniques used before providing detailed results for
the two cases.
The paper is organized as follows : Section 2 presents the governing equations and their boundary
conditions solved by the CADYF code. Section 3 presents the numerical techniques for the flow solver
and error estimation. Section 4 provides results for the first test case : a Manufactured Solution that
mimics a two-dimensional, steady incompressible turbulent boundary-layer flow. Code Verification
as well as the evaluation of the accuracy of the Uncertainty Estimation methods will be performed
using the MMS. Finally, the numerical results and their estimated errors are given for the second test
case, that is the 2-D steady, incompressible, turbulent flow from the ERCOFTAC Classic Database
(Case 30), are discussed in Section 5.

2 Governing equations

2.1 Reynolds-Averaged Navier-Stokes equations

The flows of interest are described by the Reynolds-Averaged Navier-Stokes (RANS) equations. The
momentum and mass conservation laws are written as :

ρu · ∇u = −∇p + ∇ · (µ + µT )(∇u + ∇Tu) + f (1)

∇ · u = 0 (2)

where ρ is the density, u the velocity, p the pressure, µ the molecular dynamic viscosity, µT the
turbulent dynamic viscosity, and f the volumetric forces.

2.2 The standard k − ε turbulence model

The system is closed by computing the turbulent viscosity using the standard k − ε model. The eddy
viscosity is computed from k and ε by :

µT = ρCµ
k2

ε
(3)
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The transport equations for the two turbulence quantities are :

ρu · ∇k = ∇ ·
[

(µ +
µT

σk

)∇k

]

+ µT∇u : (∇u + ∇Tu) − ρε + qk (4)

ρu · ∇ε = ∇ ·
[

(µ +
µT

σε
)∇ε

]

+ Cε1µT
ε

k
∇u : (∇u + ∇Tu) − Cε2ρ

ε2

k
+ qε (5)

The constants appearing in these equations take the standard values proposed by Launder and Spald-
ing [1] and are given in Table 1. The quantities f , qk and qε will be used as source terms in the MMS

Table 1: Constant of the turbulence model

σk σε Cε1 Cε2 Cµ

1.0 1.3 1.44 1.92 0.09

(see Section 4).

To preserve positivity of the dependent variables (which has several advantages [2, 3]), we work
with the logarithmic form of these equations. This can be viewed as using the following change of
dependent variables :

K = ln(k) and E = ln(ε) (6)

The transport equations for the logarithmic variables are :

ρu · ∇K = ∇ ·
[(

µ +
µt

σk

)

∇K
]

+

(

µ +
µt

σk

)

∇K · ∇K (7)

+µte
−KP − ρ2Cµ

eK

µt
+ qK

ρu · ∇E = ∇ ·
[(

µ +
µt

σε

)

∇E
]

+

(

µ +
µt

σε

)

∇E · ∇E (8)

+ρC1CµeK−EP − C2ρeE−K + qE

The production of turbulence P is defined as :

P = ∇u :
[

∇u + (∇u)T
]

Note that equations (7)-(8) are equivalent to the original equations of the turbulence model; only
the computational variables are different. Hence, the turbulence model is unchanged. The eddy
viscosity is given by :

µt = ρCµe2K−E (9)

2.3 Wall boundary conditions

The standard k − ε turbulence model is not valid when the turbulent Reynolds number is low, as is
the case in the near wall regions. Wall functions are used to describe the solution in these regions
and will be used for computing the flow over the backward facing step (see Section 5). Thus, the
computational wall boundary is taken at a distance d from the physical wall boundary. The region
between the two boundaries is the region where the flow is represented by the wall functions. In the
remainder, the computational wall boundary will be referred to as the wall and quantities evaluated
there will be identified with the subscript w.
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We use the two-velocity scale wall functions described by Chabard [4] and Ignat et al. [5] and
presented in the following paragraphs.

A wall function expresses the value of u+, the non-dimensional velocity parallel to the solid wall,
as a function of y+, the non-dimensional distance from the physical wall :

u+ =
1

κ
ln(Ey+) for y+ > 10.8 (10)

where κ is the Karman constant and E a roughness parameter (for smooth walls κ = 0.42 and
E = 9.0). The variables u+ and y+ are defined as :

y+ =
ρduk

µ
and u+ =

ut

u∗∗

(11)

where ut = u · t̂ is the tangential velocity, d is the distance normal to the physical wall and u∗∗ =
√

τw/ρ is a friction velocity. The value of d where the wall function is applied is chosen so that y+

lies within the range of validity of the wall function (i.e. 30 < y+ < 300) [6]. A velocity scale based
on the turbulence kinetic energy [4] is computed by :

uk = C
1

4

µ k
1

2

w = C
1

4

µ exp

(Kw

2

)

(12)

The boundary conditions associated with the governing equations are as follows :

• flow boundary condition in the tangential direction : the tangential force exerted by the fluid on
the wall is a prescribed function of the tangential velocity (mixed or Robin boundary condition).
Using the two-velocity scale wall function leads to a linear relationship between the wall shear
stress τw and ut.

[

(τ · n̂) · t̂
]

wall
= τw = ρuku∗∗ =

ρuk

1
κ

ln(E ρduk

µ
)
ut (13)

• flow boundary condition in the normal direction : the normal velocity is set to zero.

u · n̂ = 0 (14)

• boundary condition for K : The K-equation is solved with a zero normal flux boundary condi-
tion. This condition arises from the fact that the wall shear stress is assumed constant in the
wall functions region (i.e. 0 < y+ < 300) [6]. This Neumann condition is required to compute
the distribution of uk along the wall.

(

µ +
µt

σk

)

∇K · n̂ = 0 (15)

• boundary condition for E : The boundary condition for the logarithm of ε is the logarithm of
the usual Dirichlet boundary condition for the turbulence kinetic energy dissipation rate at the
wall in which the velocity scaled uk is used instead of u∗∗.

E = ln

(

u3
k

κd

)

(16)
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3 Numerical Techniques

3.1 General Presentation

The RANS equations (Eqs. (1)- (2)) and the logarithmic form of the turbulence equations (Eqs. (7)-
(8)) are solved by a finite element method. The weak forms of the equations are obtained by multi-
plying them by a set of test functions and integrating by parts them over the domain to yield residual
equations. They are reduced to zero by making them orthogonal to the set of test functions [7]. We
use a mixed or velocity-pressure formulation in which a Lagrange multiplier (the pressure in the fluid)
is used to enforce the incompressibility constraint. The velocity and the logarithmic turbulence vari-
ables are discretized using 6-noded quadratic elements. Fluid pressure is discretized by piecewise
linear continuous functions (element P2 − P1). For high Reynolds number, the equations are domi-
nated by convection so that the standard Galerkin discretization may lead to non-physical oscillations
and convergence difficulties. Hence, some form of upwinding is required. This is done by using the
Streamline Upwind/Petrov-Galerkin (SUPG) stabilized formulation initially proposed by Brooks and
Hughes [8] and further improved by Ilinca at al [9]. The resulting finite element method is formally
third order accurate for all the variables except the pressure which is only second order accurate.
Hence, the stresses −pI + (µ + µT )(∇u + ∇Tu) and the diffusion of K and E are formally second
order accurate. However, the stabilization formulation locally introduces small amount of artificial
numerical diffusion which may reduce the accuracy of the standard finite element formulation.
The discretization of the equations leads to a system of non-linear algebraic equations which are
linearized by Newton’s method. All linear algebraic systems are solved using a skyline direct solver.

The global system of equations are solved in a partly segregated manner as illustrated in figure 1.
This algorithm has been derived by rewriting the equations for k and ε in block triangular form
using the eddy viscosity definition as presented in Ref. [3, 10]. Global iterates are performed for

(0) given initial solutions : u0,K0, E0

(1) compute µti from Ki and Ei

(2) for µti given
(2.1) solve momentum-continuity
(2.2) solve the K-equation
(2.3) solve the E-equation
(2.4) update µt and go to step (2)

Figure 1: Solution algorithm

the momentum-continuity and turbulence equations. Sub-iterations of steps (2.2)-(2.4) of turbulence
transport equations are also used to accelerate the overall convergence of the iterative process (see
Refs. [11, 2, 10, 12] for more details).

3.2 Error Estimation and adaptive procedure

The accuracy of the finite-element approximation can be directly related to the local mesh size. An
adaptive remeshing procedure is employed to improve the accuracy, by refining the mesh in regions of
high error in the flow and turbulence variables. Regions targeted for refinement are identified by the
Zhu-Zienkiewicz (ZZ) error estimator [13, 14] which evaluates estimates of elemental error norms. It
has been shown to be asymptotically exact using a proper measure (norm) of the error for a class of
elliptic problem. The error estimator is based on local projections of discontinuous quantities onto a
local continuous polynomial basis. For example, since the P2−P1 element uses a piecewise quadratic
basis for the velocity, the stress tensor is linear and discontinuous. By projecting it onto a continuous
polynomial basis, we can derive an error estimate defined as the difference between the finite-element
stresses and their projections. Thus, the elemental error can only be measured in the so-called energy
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norm (or a mathematically equivalent such as the H 1 semi-norm). As a consequence, the following
norms are considered in the present work :

H1U : ||u||H1 =

√

∫

Ω

(∇u · ∇u + ∇v · ∇v) dΩ (17)

H1P : ||p||H1 =

√

∫

Ω

∇p · ∇p dΩ (18)

EVK : ||K||eqv =

√

∫

Ω

∇K · ∇K dΩ (19)

EVE : ||E||eqv =

√

∫

Ω

∇E · ∇E dΩ (20)

EVM : ||µt||eqv =

√

∫

Ω

∇µt · ∇µt dΩ (21)

The error norms are obtained by replacing the quantity by its exact or estimated error. For example,
the true elemental error is :

||ep||exa
H1 =

√

∫

Ω

(∇pexa −∇ph) · (∇pexa −∇ph) dΩ

while the ZZ estimate is obtained by evaluating :

||ep||ZZ
H1 =

√

∫

Ω

(∇pZZ −∇ph) · (∇pZZ −∇ph) dΩ

The above expressions yield global quantities when integration is performed on the whole domain Ω.
Elemental errors and estimates result from integration over a given element volume Ωk.
Once error estimates are obtained for all variables (flow and turbulence variables), an optimal mesh
size distribution is determined using the asymptotic convergence rate of the finite-element method
and the principle of equidistribution of the error. The optimal mesh is generated to redistribute the
mesh sizes so that each element has the same contribution to the norm of the total error. This is
performed in an iterative fashion, beginning with a coarse mesh and producing a sequence of meshes
which reduce the error by a constant factor over that of the previous mesh. The mesh characteristics
(element size) are derived separately for each dependent variable using the norms previously defined.
The minimum element size predicted by each of the dependent variable is selected on a given ele-
ment. The computational domain is then remeshed using an advancing front technique. Details of
this adaptive remeshing procedure may be found in the literature [15, 16, 17]. Note that an additional
error estimate for the eddy viscosity is also constructed since slowly varying fields of K and E can
result in rapid variation of µt. This is important to the success of adaptation in turbulent flows since
the eddy viscosity is the sole mechanism for transfer of momentum and turbulent kinetic energy by
turbulent fluctuations [18, 3].

The ZZ error estimator belongs to the family of post-processing techniques (or least-squares-
based recovery techniques). The essence of the ZZ error estimator is to use the difference between
the post-processed field and the original finite element solution as a measure of the error. Obviously,
the error estimation is crucially dependent on the order of accuracy of the post-processed solution.
It is worth noting that a very much improved process, named the Super-convergent Patch Recovery
(SPR) [13, 14, 19], has been developed and yields super-convergent values of solutions. Similar
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post-processed procedures have been developed in the wake of the SPR. Wiberg et al. made fur-
ther improvements by requiring that the recovered quantities satisfy the equilibrium equation and/or
boundary conditions [20]. These techniques yield asymptotically exact local (or point wise) estimate
of the true error. Thus, asymptotically exact error estimates are obtained in any norm. All these pro-
cedures are similar to the ZZ projection. However, they assume some super-convergence property of
the finite element : the post-processing is made by fitting a higher order polynomial expansion, by the
least squares method, to the finite element solutions at super-convergent points over a patch. A math-
ematical proof that a recovery-based estimator yields an asymptotically exact estimate of the error, if
the super-convergent property holds, can be found in Ref. [21]. However, it should be stressed that
super-convergence only occurs in very special circumstances and generally speaking only for simple
problems and some FE discretization. No super-convergence property has ever been observed for the
Navier-Stokes equations (even for regular grids and laminar flows). In the cases where there is no
super-convergence property, the asymptotic exactness of the derived error estimators can no longer
be proved formally.
In practice, however, recovery-based estimators perform surprisingly well in cases where no super-
convergent property holds if a proper norm of the error is used. The reason behind this robustness
is not fully understood but appears to depend on the fact that the finite element derivatives are dis-
continuous from one element to the next (the projected solution being continuous). This explains
why the ZZ estimator can only yield elemental error estimates in the norm of the derivatives (H 1

semi-norm) and not in the L2 norm of the variable. As will be shown and already illustrated in the lit-
erature [18, 16], the ZZ estimator is ideally suited for driving mesh adaptation. However, this feature
constitutes a serious weakness if one is focusing on quantitative assessment of point-wise numerical
accuracy since the ZZ estimator does not provide point-wise information.

To remedy the situation and achieve point-wise error estimates, we proceed as follows. The
meshes are generated by adaptive remeshing driven by the ZZ estimator. Point-wise error estimates
are obtained by a separate and different reconstruction. We use an L2 least squares approach (i.e.
project the solution rather than its derivatives). We approximate the exact field over an element by a
polynomial of degree k + 2 where k is the degree of the finite element basis functions. A point-wise
error estimate is computed by taking the difference between the L2 elemental reconstruction and the
finite element solution in the appropriate element containing the point of interest (see Ref. [22] for
details).

4 Test Case 1 : Manufactured Solution

4.1 Manufactured solution and Boundary conditions

The manufactured solution is thoroughly described in Ref. [23]. It mimics the near-wall behavior of
a two-dimensional, steady incompressible turbulent boundary-layer. The near-wall behaviour of all
the specified quantities is similar to what is observed in near-wall turbulent flows.

The standard two-equation k−ε model is supposed to be valid only in fully-turbulent regions. The
damping functions of the two one-equation models suggest that the present manufactured solution is
not fully-turbulent close to the bottom [23]. Nevertheless, the application of the MMS being a purely
mathematical exercise, the present MS can be used for the standard k − ε model as well. However, at
the bottom of the computational domain, (y = 0), the source term of the ε transport equation tends
to infinity, due to the behaviour of the dissipation term. In the present context of a manufactured so-
lution, this will lead to a transport equation for ε driven by the forcing source term in the ”near-wall”
region. Hence, its usefulness for Calculation Verification may be questionable.

The computational variables for the turbulence model are the logarithms of k and ε. As stated
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earlier, the original turbulence model is unchanged, only the computational variables are different.
However, with such a formulation, the manufactured k and ε of any manufactured solution must not
value zero in any part of the computational domain since the logarithm function would be singular.
As a consequence, the original manufactured solution presented in Ref. [23] was sightly modified by
adding small constants αk and αε to the MS :

k = kmaxη2
νe1−η2

ν + αk (22)

ε = 0.36
k2

max

νmax
e−η2

ν + αε (23)

A trade-off must be made when choosing the values of the two constants. They must be large enough
to avoid any numerical problem originating from the logarithm function. And, they must be cho-
sen so that the differences with the original manufactured solution to be negligible (including the
manufactured eddy-viscosity field). Following these observations, we choose :

αk = 10−5 ; αε = 10−3 (24)

Even though no formal proof is available, we believe that these modifications of the manufactured
turbulent kinetic energy and dissipation rate have no significant influence on the manufactured fields.
Furthermore, the verification exercises are not changed at all. For example, we examine the value
of the manufactured eddy-viscosity at the wall which originally is zero. Using the expressions from
Eqs. (22) - (23) and the values from (24), the manufactured eddy-viscosity at the wall is :

(µt)w = ρCµ

α2
k

0.036 + αε

=
9

3.7
10−10 (25)

Hence, the value of the manufactured eddy-viscosity at the wall is negligible compared to the molec-
ular viscosity.

We now examine the boundary conditions for this manufactured problem. They must be set using
the exact solution. The following boundary conditions are typical of such problems. Both Dirichlet
and Neumann boundary conditions are applied for the verification exercise to be complete :

Inflow boundary Uh = U(y)

Vh = V (y)
kh = k(y)
εh = ε(y)

Outflow boundary kh = k(y)

εh = ε(y)

(σh · n) · î = −p(y) + 2(µ + µT (y))U,x(y)

(σh · n) · ĵ = (µ + µT (y))(U,y(y) + V,x(y))

Upper boundary Uh = U(x)

Vh = V (x)
kh = k(x)
εh = ε(x)

Lower boundary Uh = U(x)

Vh = V (x)
kh = k(x)
εh = ε(x)

Where subscript h denotes the discrete solution.

4.2 Numerical results

Seven grid adaptation cycles have been performed. Figure 2 shows the last adapted grid which con-
tains 108 665 nodes. It is typical of adapted meshes for boundary layer flow problems as expected.
Extensive refinement is observed in the near-wall region. Several bands of refinement can also be
identified which correspond to regions of rapid variation in velocity, K, E and µt.

Figures 3 and 4 shows the evolution of the global error norms defined by Eqs. (17) - (21) (true
and estimated) with the adaptive cycles. The corresponding efficiency indices (ratio of estimated error
over the exact error) are presented in figure 5. As explained previously, since the turbulence variables
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Figure 2: Adapted mesh for the manufactured solution

are solved in logarithmic form, adaptation is performed on ZZ reconstructions for the logarithmic
variables K and E (note that their orders of magnitude are significantly different from those of the
original variables). As can be seen, the errors decrease with mesh refinement and the numerical
solution converges towards the exact solution. Furthermore, the error estimates approach the true
errors with mesh refinement. This indicates that adaptation improves the accuracy of both the solution
and the error estimator. In order to evaluate more precisely the accuracy of the estimated errors,
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Figure 3: Evolution of global error norms with adaptive cycles (1)

table 2 provides the values of the global error norms along with their associated efficiency indices
computed on the last adapted mesh. As can be seen, all the efficiency indices are very close to one
indicating that the ZZ error estimator performs well.

As part of the Code Verification exercise, we now look at the observed orders of convergence for
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Exact Estimated Efficiency index

H1U 1.370 10−3 1.245 10−3 0.909

H1P 3.044 10−4 2.590 10−4 0.851

EQK 2.325 10−1 2.441 10−1 1.050

EQE 1.878 10−1 1.857 10−1 0.989

EQM 5.879 10−7 5.739 10−7 0.976

Table 2: Global error norms

the dependent variables. These observed orders are computed from the exact global error norms on
two different meshes. However, the use of the adaptive procedure leads to a difficulty in the evaluation
of these orders since the refinement ratio between two consecutive grids in the adaptive process is
clearly not uniform over the computational domain (except if the asymptotic range has been reached
and the error is already equidistributed for all variables). A coarser grid with a refinement ratio of 2 is
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easily obtained by the advancing front method by setting the coarser mesh size to δH =
√

2δh. This is
equivalent to a coarsening by

√
2 in each direction so that the number of grid points is halved at each

cycles of mesh coarsening. This is easily done by our mesh generator but can not be enforced exactly
everywhere for technical reasons. However, the refinement ratio between these two meshes is nearly
constant over the domain which is better suited for the evaluation of the observed orders of accuracy
from the global error norms. The observed rates of convergence are given in table 3. Without the
stabilization terms, the theoretical orders of accuracy of the standard Galerkin FEM should be 2 for
all norms but the H1P for which the order should be 1. However, the stabilization formulation locally
introduces small amount of artificial numerical diffusion which can degrade the accuracy. As can be
seen from table 3, the effect of the stabilization terms is less pronounced on the pressure than on the
other variables (u, K, E). This was expected since the pressure discretization is second order accurate
while the others variables discretization is third order accurate, thus the influence of the first order
numerical diffusion from the stabilization terms should be less important on p. From these results,

H1U H1P EQK EQE EQM
1.273 0.902 2.318 2.768 2.122

Table 3: Observed orders of convergence in global exact error norms

we can deduce the observed orders of convergence of the variables which are given in table 4 along
with their corresponding theoretical orders of convergence. The differences between the theory and
what is observed arises from the loss of accuracy due to numerical diffusion techniques for dealing
with high Reynolds number problem.

u p K E µt

theoretical 3.000 2.000 3.000 3.000 3.000
observed 2.273 1.902 3.318 3.768 3.122

Table 4: Orders of convergence of variables

We now focus our attention to the evaluation of the accuracy of the error estimation technique for
an integral quantity : the friction resistance Rf on the wall. Taking ρU 2

refLref as a reference force, the
friction resistance is computed as follows :

Rf =
1

ρU2
refLref

∫

Γw

τ · n̂ · ey dΓ (26)

Figure 6 shows the evolution of Rf with adaptive cycles. As can be seen, grid convergence of Rf is
achieved rapidly by the adaptive strategy. Table 5 gives values of the friction coefficient Eq. (6) and its
errors on the last adaptive grid. As can be seen, the relative exact error on Rf is small (2.68864 10−5)
and the estimated error is relatively close to the exact error with an efficiency index of 0.581. From
this we conclude that the error estimation method for integral quantity successfully computes the
order of magnitude of the exact error but does not provide even one significant digit. However, it is a
fairly accurate error prediction for a high Reynolds turbulent flow.

Friction Coefficient Exact Error Estimated Error Efficiency index

0.312938 10−5 0.841375 10−10 0.488755 10−10 0.581

Table 5: Results for the friction coefficient
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Finally, the accuracy of the error estimation technique for local flow quantities is examined.
The coordinates of the three local points under consideration are : Point 1 (0.600,0.001), Point 2
(0.750,0.002) and Point 3 (0.900,0.200). At these locations, we study the values of the velocity com-
ponents (U and V ), the pressure coefficient Cp, the eddy-viscosity µt and their associated errors.
Note that here, the pressure coefficient is defined as :

Cp =
p

ρU2
ref

(27)

The results are collected in table 6. All the values have been checked for grid convergence with

Local point Variables Value Exact Error Estimated Error Efficiency index

1

U 0.752228 10−2 0.138221 10−6 0.100532 10−6 0.727

V 0.626501 10−5 0.362070 10−8 0.149948 10−7 4.141

Cp 0.961490 10−2 0.100520 10−8 0.386091 10−8 3.841

µt 0.748136 10−9 0.114963 10−11 0.778382 10−12 0.677

2

U 0.120354 10−1 0.229121 10−6 0.167990 10−6 0.733

V 0.159042 10−4 0.142939 10−6 0.116034 10−6 0.812

Cp 0.191728 10−1 0.145184 10−7 0.790371 10−8 0.544

µt 0.209155 10−8 0.432803 10−12 0.676875 10−12 1.564

3

U 0.791275 10+0 0.358949 10−6 0.903074 10−7 0.252

V 0.770422 10−1 0.538351 10−6 0.628828 10−6 1.168

Cp 0.161486 10−1 0.131497 10−6 0.310776 10−6 2.363

µt 0.676005 10−4 0.111044 10−9 0.189889 10−8 17.100

Table 6: Results for local flow quantities

a convergence behaviour similar to the one observed for the friction resistance (see figure 6). The
maximum exact relative error is found on the value of µt at point 2 (0.898750 10−2 ) and in general
the finite element solution reproduces the exact solution with more than four or five significant digits.
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Figure 7: Inlet profiles for the turbulence variables

The error estimate based on the Wiberg solution reconstruction over an element predicts the order of
magnitude of the exact error for all the values but the one of µt at point 3. In general, the accuracy
of the error estimation is similar to the one observed for the integral quantity. Deriving an average
efficiency index is a non-trivial task. Simple arithmetic averaging can lead to misleading results. We
have opted to normalize all efficiency indices by using their inverse when greater than one. This is
acceptable since an index value of ξ is equivalent to one of 1

ξ
the difference being that one of them

indicates overestimation while the other one expresses underestimation. Neither is preferable. This
approach leads to a mean efficiency index of 0.498. These results are satisfactory in terms of accurate
error prediction for this class of problem and typical of what was observed previously. However, since
the error is not fully reproduced, it would be useful to derive safety coefficients to compute error
bands in the spirit of the Grid Convergence Index [24]. Finding the safety factors would require a
large number of test cases for achieving error bands that are correct in ninety five percent of the cases.
The present results are promising and bode well for deriving a mono-grid error band procedure.

5 Test Case 2 : Backward Facing Step

For this test case, the boundary conditions along walls are prescribed using wall functions. At the
inlet, Dirichlet boundary conditions are applied and at the outlet we prescribed homogeneous Neu-
mann boundary conditions. The inlet profiles for all variables are defined using experimental data
and mathematical treatments to ensure the continuity of both the variables and their derivatives. The
original inlet profiles for the turbulent variables are plotted in figure 7. As stated, these profiles are
constructed in a piecewise manner to obtain C1 continuous functions as required by most numerical
techniques. However, the logarithms of these C 1 continuous functions are no longer C1 continuous.
This may lead to numerical problems for our code. Hence, we sightly modified the inlet profiles. The
background experimental data are unchanged but the piecewise mathematical treatment for obtaining
the profiles is done so that our computational variables (the logarithms of the turbulent variables) is
C1 continuous. The resulting inlet profiles thus obtained are plotted in figure 7. We believe that the
modification of the profiles will only have minor influence on the computed solution since the physic
behind these modified profiles is the same than for the original ones. Only, the mathematical assembly
is different.

Seven grid adaptation cycles have been performed. Figure 8 shows the last adapted grid which
contain 55 776 nodes. An close-up view of the adapted mesh around the step is also provided in
figure 9. It is similar to adapted meshes obtained for the flow over a backward facing step as studied
experimentally by Kim [25] and the one studied experimentally by Vogel et al [12]. Similarly to
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previous wall-bounded flow grids, the refinement has been performed intensively in the near-wall
region. Different bands of refinement can also be identified which correspond to regions of rapid
variation in velocity, K, E and µt.

Figure 8: Adapted mesh for the backward facing step

Figure 9: Inside view of the adapted mesh around the step

Before proceeding with any analysis of the results, we must check that the non-dimensional wall
distance chosen for each wall lies in the interval of validity imposed by the wall functions. That is,
it is required that y+ be less than 300 and greater than 30 but preferably as close to 30 as possible.
Figure 10 gives the evolution of y+ with adaptive cycles for each wall. As can be seen, the wall
distances converge with the adaptive cycles. And, for the last adapted grid, the above condition is
satisfied everywhere except near the corner singularity.

We first examine the result for the recirculation length. Figure 11 shows the evolution of the
computed recirculation length with adaptive cycles. As can be seen, convergence is achieved. The
value of the non-dimensional recirculation length computed on the last adapted mesh is 5.446699.
The evaluation of the discretization error is 0.102065.

We now examine several integral quantities : the friction resistance Rf on the bottom and top
walls and the pressure resistance Rp on the bottom wall. Taking ρU 2

refLref as a reference force, the
friction resistance is computed from Eq. (26) and the pressure resistance as follows :

Rp =
1

ρU2
refLref

∫

Γw

−(p − poutlet)n̂ · ey dΓ (28)

Table 7 gives the numerical values of the coefficients and their estimated errors on the last adaptive
grid.

Finally, the error on local flow quantities is examined. The coordinates of the three points under
consideration are : Point 1 (0.0,1.1), Point 2 (1.0,0.1) and Point 3 (4.0,0.1). At these locations, we
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Figure 10: Evolution of y+ with adaptive cycles
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Figure 11: Evolution of recirculation length with adaptive cycles

Rf on the bottom wall Rf on the top wall Rp on the bottom wall

Value 0.526499 10−01 0.672544 10−01 0.119342 10+00

Estimated Error 0.993600 10−02 0.253363 10−01 0.223481 10−01

Table 7: Results for the resistance coefficients

consider the values of the velocity components (U and V ), the pressure coefficient Cp, the eddy-
viscosity µt and their errors. Note that here, the pressure coefficient is defined as :

Cp =
p − poutlet

1/2ρU2
ref

The results are collected in table 8. All the values have been checked for grid convergence with a
convergence behaviour similar to the one observed for the recirculation length (see figure 11). The
maximum estimated relative error is found on the value of µt at point 2 (0.898476 10−2 ). Generally
speaking the error estimates appear sharp in that they are small enough to provide hints that we have
achieved 4 to 5 significant digits in predictions.

6 Concluding remarks

This paper has presented the results for the two test cases proposed for the Second Workshop on Un-
certainty Analysis - Lisbon 06 from the Ecole Polytechnique de Montréal team. The CADYF-FEM
flow solver, the h-adaptive procedure and the numerical error estimation techniques used has been de-
tailed. The manufactured problem provides a Verification of the code in the sense of Roache [24] and
provides reference information about the accuracy and reliability of the estimation error procedures
used. All the results requested for the Workshop have been given.
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