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Abstract 
 

Results uncertainty estimation has been computed for the fluid flow simulation of the incompressible 
turbulent flow in a Backward Facing Step, using the Grid Convergence Index method and the 
commercial CFD code ANSYS CFX. Results are shown both for the Shear Stress Transport 
turbulence model as well as for a variation of this model that incorporates a Reattachment 
Modification term. 

 
 
INTRODUCTION 
 
Uncertainty estimation of Computational Fluid Dynamics (CFD) results is becoming a necessary 
step in CFD studies, and a number of methods have been derived during the lat years in order to 
accomplish it. This paper presents an example of uncertainty estimation for a Backward Facing 
Step calculation, which corresponds to the ERCOFTAC database, case C-30. 
 
 
NUMERICAL MODEL 
 

The calculations have been performed with the commercial CFD code ANSYS CFX. The code is 
based on the Finite Volume method and vertex-centred. 
 
 
Discretization Scheme 
 
The Navier-Stokes conservation equations described below are discretized using an element-based 

finite volume method [1]. The mesh may consist of tetrahedral, prismatic, pyramid, and hexahedral 

elements. A control volume is constructed around each nodal point of the mesh, as illustrated in 
Figure 1. The subface between two control volumes within a particular element is called an 
integration point (ip); it is at integration points that the fluxes are discretized. 
Integration point quantities such as pressure and velocity gradients are obtained from nodal values 
using finite element shape functions, with the exception of advected variables which are obtained 
using an upwind-biased discretization. 
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Figure 1: Finite Volume Surface and Mesh Element in the discretization 
 
We now consider the discretization of the conservation equations at each control volume. The 
discretization is fully conservative and time-implicit. The conservation equations are integrated over 
each control volume, volume integrals are converted to surface integrals using Gauss’ divergence 
theorem, and surface fluxes are evaluated in exactly the same manner for the two control volumes 
adjacent to an integration point.  
 

The advection scheme used to evaluate the variable φip in terms of neighbouring vertex values φ is 
extremely important for the solution accuracy. We write it in the form 

       (1) 
Where φup is the upwind vertex value and ∆r is the vector from the upwind vertex to the integration 

point. The quantity β∇φ.∆r is called Numerical Advection Correction. If β = 0, this scheme recovers 

the first-order upwind scheme, which is bounded but excessively diffusive. If β = 1, this scheme is a 
second-order upwind-biased scheme, but unbounded. A bounded high-resolution scheme can be 

obtained by making β as close to 1 as possible, but reducing where necessary to prevent 
overshoots and undershoots from occurring. For standard advection terms, CFX uses a method 

similar to that described by Barth and Jesperson [2].  
 
The mass flows must be discretized in a careful manner to avoid pressure-velocity decoupling. This 

is performed by generalizing the interpolation scheme proposed by Rhie and Chow [3], such that 

the advecting velocity is evaluated as follows: 

 

   (2) 
where 

       (3) 
and b represents the sum of advection and viscous coefficients in the discretized  momentum 
equation. The overbar denotes the average of the control volume values adjacent to the integration 
point.  
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Solution Strategy 

 
Segregated solvers employ a solution strategy where the momentum equations are first solved, 
using a guessed pressure, and an equation for a pressure correction is obtained. 
Because of the ‘guess-and-correct’ nature of the linear system, a large number of iterations are 
typically required in addition to the need for judiciously selecting relaxation parameters 
for the variables. 
ANSYS CFX uses a coupled solver, which solves the hydrodynamic equations (for u, v, w, p) as a 
single system. This solution approach uses a fully implicit discretisation of the equations at any 
given time step. For steady state problems, the time-step behaves like an ‘acceleration parameter’, 
to guide the approximate solutions in a physically based manner to a steady-state solution. This 
reduces the number of iterations required for convergence to a steady state, or to calculate the 
solution for each time step in a time dependent analysis. 
 

The linear system of equations is solved using a coupled algebraic multigrid technique [4]. 
 
 
SIMULATION DETAILS  
 
The example corresponds to a Backward Facing Step geometry, from the ERCOFTAC Test Case 
C-30. The step size H is 0.0127 m, the tunnel height is 8H and the tunnel span is 12H. 
The origin of the coordinate system is located at the low corner of the step, with the inlet boundary 
located at x = -4H, the outlet boundary at x = 40 H and the top boundary at y = 9H.  
 
A set of three grids has been used in the calculations, with the mesh parameters given in Table 1. 
 

 
 

Table 1: mesh parameters for the three grids used in the calculation 
 
Although not necessary for the simulation or results accuracy, the tunnel span has also been 
discretized in space with 20 nodes in order to preserve the geometry width. 
Mesh nodes have been refined towards the walls with a geometric law of ratio 1.25, where the first 
node has been set at 0.1 mm from the wall.  
 

The flow Reynolds number is 50000, defined as Re = Uref Lref / ν where Uref is 44.2 m/s and Lref is H. 

That means the flow kinematic viscosity ν is 1.1227e-5 m
2
/s. 

 
The definition of the Boundary Conditions is as follows: 
 
- Inlet: velocity and turbulence profiles for fully developed turbulent flow, provided from Dr. Eça from 
IST Lisbon, with Uref = 44.2 m/s. 
- Outlet: average relative static pressure = 0 Pa. 
- Tunnel top and bottom surfaces: walls with u=v=0.0 m/s. 
- Tunnel side walls: symmetry condition. 
 
The Shear Stress Transport turbulence model with Automatic wall treatment by Menter [5] has been 
used for the simulation, as well as a modification of this model that incorporates a term for accurate 
boundary layer reattachment prediction. The reattachment modification term accounts for an 
additional production of the kinetic energy k in separated shear layers, as standard RANS and RSM 
models underpredicts the Reynolds stresses in this area. 
 

 Nodes A Nodes B Nodes C Nodes D Nodes E 

Grid1 40 17 20 135 20 

Grid2 60 25 30 200 20 

Grid3 90 40 45 300 20 

A 

B 
D 

E C 
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UNCERTAINTY ESTIMATION PROCEDURE 
 
The uncertainty estimation has been calculated by means of the Grid Convergence Index (GCI) 
method [6]. The method defines the numerical uncertainty U for any local or integral variable as 
 

REsFU γ=          (3) 

 

where Fs is a safety factor and γRE is the error estimation resulting from the Richardson 

extrapolation [6]. Richardson extrapolation defines the error γRE as 
  

p

iiRE hαφφγ =−= 0         (4) 

 

Where φi is the numerical solution on a given grid i, φ0 is the exact solution, α is a constant, hi is a 
measure of the representative mesh cell size and p is the observed order of accuracy of the 
numerical method. 
 

There are three unknowns in equation (4): φ0, α and p, so in theory three grids are necessary in 
order to obtain the uncertainty estimation of a given local or integral variable. 
 
Eça and Hoekstra [7] observed that more than a grid triplet is usually necessary to estimate the 
uncertainty as the estimation may vary a lot among different grid triplets. However, for the example 
presented in this paper, only one grid triplet have been used. 
 
During the grid convergence study with three grids, the solution is convergent if  

 

0)()( 2312 >−⋅− φφφφ         (5) 

0>p           (6) 

 
Conditions (5) and (6) are necessary to ensure that φ changes monotically and that converges to a 
finite value for grid cell size zero. 
 
If for a variable computed on three grids, conditions (5) and (6) are fulfilled, and  
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and γRE = φ1 - φ0  from  
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As only one grid triplet is used for a relatively complex turbulent flow, Roache [8] recommends using 
a safety factor Fs in order to estimate the uncertainty U, as shown in equation (3). The proposed 
values for Fs are: 
 
If 0.5 < p < 3.5, Fs = 1.25 
If 3.5 < p < 4.5, Fs = 3.00 
If p < 0.5 or p > 4.50, the uncertainty U is calculated as the maximum difference between the 
solutions obtained on the calculation grids multiplied by a safety factor Fs = 3.00 for  p < 0.5 or Fs = 
1.35 for p > 4.50. 
 
 
RESULTS 
 

All simulations have been performed using double precision. Results quantities φ1,φ2 and φ3 are 
shown in tables 3 and 4, together with the observed order of convergence p and the uncertainty U. 
Values of hi are shown in table 2, and have been calculated as Lref / number of nodes in the step. 
 

 h = Lref/C 

Grid1 0.006350 

Grid2 0.000423 

Grid3 0.000282 

 
Table 2: Values of hi 
 

The studied quantities are the following local variables: u, v, Cp defined as (p-poutlet)/(½ρU
2
), eddy 

viscosity νt, all of them being monitored at x=0,y=1.1h, x=h,y=0.1h and x=4h,y=0.1h, and the 
following integral variables: friction resistance coefficient at the top and bottom walls and pressure 
resistance coefficient at the bottom wall. 
 
 
 
 
 
 
 
 
 

    x=0,y=1.1H     x=0,y=1.1H   

  SST Grid1 SST Grid2 SST Grid3 SSTrm Grid1 SSTrm Grid2 SSTrm Grid3 

u 0.57151 0.53566 0.51808 0.60176 0.56328 0.54321 

p u  0.263058071     0.240292141     

U u 0.16029 0.16029   0.17565 0.17565   

v -0.0091355 -0.0087869 -0.0085967 -0.011966 -0.011274 -0.01082 

p v 1.494207444     0.155597629     

U v 0.000443496 0.00024197   0.003438 0.003438   

Cp -0.50731 -0.57796 -0.61629 -0.48197 -0.55116 -0.59111 

p Cp 1.508157465     0.202753981     

U Cp 0.089823071 0.048732036   0.32742 0.32742   

νt 5.05180E-06 3.57700E-06 2.9218E-06 6.89790E-06 4.74730E-06 3.79010E-06 

p νt 2.001003582     0.298832866     

U νt 1.85169E-06 8.22641E-07   9.3234E-06 9.3234E-06   
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  x=H,y=0.1H     X=H,y=0.1H     
  SST Grid1 SST Grid2 SST Grid3 SSTrm Grid1 SSTrm Grid2 SSTrm Grid3 

u -0.0028959 -0.0014233 -0.001011 -0.006768 -0.0024567 -0.001929 

p u  0.469955614     0.775412516     

U u 0.0056547 0.0056547   0.006140748 0.000751623   

v 0.00062348 0.00047929 0.00038371 0.0026972 0.0017821 0.0015279 

p v 1.014065755     0.472864022     

U v 0.000192587 0.000127661   0.0035079 0.0035079   

Cp -18744 -72436 -140180 -3299.8 -28836 -18868 

p Cp Divergence     Divergence     

U Cp Divergence Divergence   Divergence Divergence   

νt 1.97900E-08 6.00600E-09 7.4106E-09 8.61350E-08 2.75260E-08 2.39930E-08 

p νt Divergence     1.036880386     

U νt Divergence Divergence   7.79608E-08 4.69954E-09   

    x=4H,y=0.1H     x=4H,y=0.1H   

  SST Grid1 SST Grid2 SST Grid3 SSTrm Grid1 SSTrm Grid2 SSTrm Grid3 

u -0.15983 -0.15798 -0.1577 -0.11031 -0.11425 -0.11463 

p u  0.697033701     0.863383054     

U u 0.00272492 0.00340615   0.005450702 0.000525702   

v -0.001954 -0.0015929 -0.00135 -0.0073963 -0.005698 -0.0052601 

p v 0.977901882     0.500359379     

U v 0.000485727 0.00060716   0.002860424 0.00073755   

Cp -4.4128 -4.4486 -4.4652 -4.7701 -4.4483 -4.7555 

p Cp 1.895465683     Divergence     

U Cp 0.045015136 0.056268921   Divergence Divergence   

νt 9.73480E-06 7.48560E-06 5.1453E-06 1.95750E-05 1.07000E-05 1.43110E-05 

p νt Divergence     Divergence     

U νt Divergence Divergence   Divergence Divergence   

 

Table 3: Local variables results for SST model and SST model with Reattachment Modification 
 

    SST      SSTrm   

  Grid1 Grid2 Grid3 Grid1 Grid2 Grid3 

*Cf BW 0.35428143 0.35648442 0.357478807 0.396169909 0.395262797 0.393742128 

p Cf BW 0.294    -0.191    

U Cf BW 0.00959211 0.00959211   Divergence  Divergence   

*Cf TW 0.68257927 0.68129133 0.680590501 0.682579271 0.681291331 0.680590501 

p Cf TW 0.225     0.812    

U Cf TW 0.00596631 0.00596631   0.008685323  0.00096297   

*Cp BW 0.39900496 0.4641372 0.534270432 0.961980333 0.964609107 0.991248579 

p Cp BW -0.0273096    -0.855    

U Cp BW Divergence Divergence   Divergence  Divergence   

**Xr 6.792 6.689 6.653 5.748 5.736 5.756 

p Xr 0.388    Divergence    

U Xr 0.354 0.354    Divergence  Divergence   

* x 1E-04,adimensionalised with ρ∗Uref
2
∗Lref∗Span,  ** adimensionalized with H 

 
Table 4: Integral quantities results for SST model and SST model with Reattachment Modification 
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DISCUSSION 
 
From the results presented above, it is observed that the order of convergence is in general low and 
it strongly depends on the variable selected, ranging from p Cf TW = 0.225 to p Cp at x=H,y=0.1H = 

1.895 for SST, and from p νt at x=0,y=0.1H = 1.036 to p v at x=0,y=0.1H = 0.155 for SST with 
Reattachment Modification. 
 
In addition to the previous issue, it is also observed that in general the level of uncertainty 
decreases with grid refinement. 
 
It is also observed that the level of uncertainty is typically smaller than the differences between 
results using different turbulence models, which mean that in the example discussed model 
uncertainties is larger than discretization uncertainties. 
 
 
CONCLUSSIONS 
 
This paper presents an example of CFD results uncertainty estimation using the Grid Convergence 
Index method and the commercial CFD code ANSYS CFX. The test case models an incompressible 
turbulent flow in a Backward Facing Step. Results are shown both for the Shear Stress Transport 
turbulence model as well as for a variation of this model that incorporates a Reattachment 
Modification term.  
It has been observed that turbulence model uncertainties are typically larger than discretization 
uncertainties, and that the observed order of convergence may vary significantly depending on the 
variable selected for the uncertainty estimation. 
 
Immediate future work is the analysis of different grid triplets in order to obtain better estimations for 
the solution uncertainties. 
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