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1 Introduction

In the recent past years, the CFD community has made a growing endeavour to quan-
tify the uncertainty of numerical computations (known as Verification of calculations) as
detailed and justified for example in [8,1,3]. Following this essential effort, the present
workshop considers two test cases of 2-D, steady, incompressible, turbulent flows from the
ERCOFTAC Classic Database (Case 18 and 30) to test error estimation procedures in
practical applications. An interesting classification of these procedures can be found in [7].
Many of them, proposed in the literature, are based on grid refinement studies along with
Richardson extrapolation. Successes, difficulties and failures of such a methodology have
already been pointed out for example in [1,2]. This paper intends to present an alternative
technique based on an equation for the discretization error in order to take into account
its known transport properties and making this approach a single grid error estimator.
This methodology has already been developed and applied with great success for laminar
flows in [3]. We are interested here to extend it to the treatment of practical turbulent
flows using the Spalart-Allmaras turbulence model [9].

2 Presentation of the flow solver

The ISIS flow solver, developed in our laboratory, uses the incompressible Reynolds-
Averaged Navier-Stokes equations. The solver is based on the finite-volume method to
build the spatial discretization of the transport equations on unstructured grids. The
face-based method is generalized to unstructured meshes composed of arbitrary volume
shapes. The velocity field is obtained from the momentum conservation equation and the
pressure field is extracted from the mass conservation constraint transformed into a pres-
sure equation. Picard’s procedure is used for the linearization of the equations. The whole
discretization is fully implicit in space and time and is formally second order accurate.
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Several near-wall low-Reynolds number turbulence models, ranging from one-equation
Spalart-Allmaras model, two-equation & — w closures, to a full Reynolds stress transport
R;; —w model are implemented in the code. For all the computations considered here, the
Spalart-Allmaras model [9] is used without transition terms.

Different methods are also available for solving linear systems. In this study, PGMRES
method with ILU-k preconditioning is considered. More details on the numerical methods
and their implementations can be found in [3].

3 The error equation method
3.1 Introduction

The present section is dedicated to the error estimation method used in this study. The
error considered here is called discretization error. It involves the discretization of the
equations which are to be solved as well as the discretization of the geometry and the
boundary conditions which create an error due to incomplete grid convergence and im-
perfect grid generation (grid aspect ratio, skewness, non orthogonality). Letting ¢ be the
exact solution which satisfies the differential operator N representing the PDE governing
this conserved variable, and a grid G}, of size h from which a numerical solution ¢ (p™*
order accurate solution) is computed with the ISIS code, then the discretization error is

defined as :

en =9 — ¢ (1)
The method of the equation for the error is based on the construction of a problem for the
discretization error e, associated to the discrete solution ¢;,. Solving this problem on the
grid G}, leads to an estimation of the discretization error which is potentially influenced
by the whole computational domain as the known transport properties of the error are
taken into account. Thus, the estimation is composed of a local contribution and a global
contribution. The problem for the error is derived using the continuous problem and the
discretization error definition (1).

Similar methodologies have already been used in the literature with two different namings
which are Discrete Error Transport Equation methods and Defect Error Correction meth-
ods as detailed in [3] (see e.g. [11,6,4,5]). Despite this semantic difference, these methods
are completely equivalent although the first kind of methododoly is designed for the pur-
pose of error estimation and the second kind for the purpose of higher order estimation of
solutions. This equivalence arises as having a r** order accurate estimation of the error on
a p'™ order accurate solution (r > p) is equal to have a 7 order accurate solution (with
no error estimation on it) by correcting the p* order accurate solution with the r** order
accurate estimation of the error using the superconvergence property of the method.

The present implementation of the method of the equation for the error designed for
finite-volume method on unstructured meshes has been extensively presented and studied
in [3]. Its properties have been pointed out on analytical problems using the Method of the
Manufactured Solution [8,3]. And it has been used successfully for estimating the errors
on numerical solutions of laminar flows. For the sake of brevity, this section will only



present the main results and will focus more precisely on the treatment of the turbulence
model.

3.2 Errors on the Navier-Stokes Equations

The adimensional form of the bidimensional incompressible Reynolds-Averaged Navier-
Stokes equations, with a first order turbulence closure, can be summerized using differen-
tial operators N' and D and classical notations :

N(u,p,m) = V-(Tu) — V- [(Rie +n)Vu| + Tl =0 (2)
N@,pv)=V-(Uv)— V- [(Rie + Mﬁv] +Vpi, =0 (2b)
D(U)=V-(U)=0 (2¢)

For the moment, no particular turbulence model is considered for determining the un-
known 4. Solving these equations and the ones related to the turbulence model with the
ISIS code leads to a discrete solution for the velocity field 5;; = (up,vp), for the pres-
sure p, and for the turbulent kinematic viscosity (v4),. According to the definition of the
discretization error, the following decompositions can be written :

u=u,+ E} v=uv,+E, p=pyt+E} ve = (Ve)n + B} (3)

Errors on the components of the velocity field are components of the error on the velocity
vector E—’;: = (E}, E}), so that U= (7;1 + E—’;: Using the previous decompositions in equa-
tions (2) leads to continuous equations for the errors that are linearized using Newton’s
procedure [3] :

- — — 1 — - —
VOB - V| + ) VEE| + T (Bran)
— = —>e p (4&)
—V-(E'NVup) + VE i, = =N (un, pr, (v)n)
- — — 1 — - —
VAGiE) - V- |(o + w)VER| + V- (Brun) )
— I %ep — (4 )
—V (B V) + VE: y = —N (vp, ph, (V)n)
— — —
V- (Ep) = —D(U) (4c)

During the Newton’s linearization only terms involving products of error have been ne-
glected. It has been shown that this linearization approximation has no influence on the
accuracy of the estimated error [3]. The main difference between the constructed problem
for the error (4) and the primal one (2) is the presence of additional source terms which
correspond to the differential residuals (the exact operator applied to the discrete solu-
tion). These extra source terms arise from the truncation of functions that appeared in N/
and D during the discretization step of (4). They are responsible for the local rise/decrease



of the error on the computational domain. Besides, it can be observed from equations (4)
that discretization errors are driven by similar transport rules to solutions they referred
to.

The differential residuals involve the continuous operators so that they can not be com-
puted exactly. It is thus necessary to formulate an approximation of them which obviously
should be more accurate than the discrete operators used in the flow solver (otherwise,
it would correspond to the algebraic residuals which are reduced to zero machine during
the computation). Using bicubic polynomials, a smooth r** order accurate reconstruction
(r > p), noted R,, is applied to the discrete solutions. The differential residuals are then
evaluated by the mean of the reconstructed solutions as all the derivatives present in the
operators N and D can be computed. It should be noted that the reconstructed solu-
tions have to be consistent with the boundary conditions of the original problem. And,
in the case of finite-volume methods, the integration of the equations must be also r*
order accurate to keep the accuracy of the evaluated residuals. All the volume integrals
over the control volumes involved can be transformed in surface integrals using the Green-
Ostrogradsky’s theorem and integration over faces is performed by the Simpson’s rule. The
higher order reconstruction and integration procedures developed have been described in
details in [3] and they have been shown to be fourth order accurate (r = 4). As a result,
the source terms in equations (4) are approximated by :

N (un, pr, Wi)n) = N (Ri(un, pr, (V1)n))
N (v, ons (V)n) = N (R (vn, pr, (V)n))

D(Uy) ~ D(R.(Uy))

The equations for the errors (4) are solved numerically with a e® order accurate method.
Actually, their resolutions are performed using the same methods than the ones devel-
oped for the flow solver so that : e = p = 2. But, as explained in [5,3], the order of
the approximate error is determined not by the order e of the discrete operator used to
computed it, but by the order r of accuracy of the evaluated differential residual in (4).
Generally speaking, the accuracy of the error estimation is given by the following re-
lation : p + min(e, min(p,r)). Consequently, a fourth order accurate estimation of the
discretization error is expected. Besides, the boundary conditions for the error are easy
to derive. For a Neumann condition implemented on a variable, a free outlet boundary
condition is applied to the corresponding error. And, for a Dirichlet condition, the er-
ror is naturally set to zero [3]. Finally, it should be emphasized that the estimation of
the discretization errors are computed on the same grid than the numerical solutions
themselves.

3.3 Extension to turbulent flow

The present section is devoted to present the extension of the error equation method for
turbulent flows. Equations (4) involve the error E;* on (14);,. This term has to be computed
using an equation for it, derived from the equations of the turbulence model used. In this



study, the one equation model of Spalart and Allmaras is considered without transition
terms and with a near-wall low-Reynolds number formulation. Its defining adimensional
equations are as follows :

Vt:fvlﬂ (6&)
—— - = 1= 1 N~ S~
T(U,l/):V-(UV)—;{V-[(R—e%:Z)VVH—%157/ (6b)
- % [V5-V7] + cunfu <g> =0

where d is the distance from the closest surface. The different constants and functions
that appeared in (6) can be found in [9] or [10]. Once again the decompositions (3) are
introduced in (6) in order to write an equation for E;" which is linearized in the Newton’s
sense. When deriving this equation, the different functions (f,1, f,, and S) of equations (6)
are considered as part of the model and thus it is supposed that no errors are attached
to their discretisations. This consideration leads to great simplifications in the equation
for the error even though it is the only justification to it and it is not possible to evaluate
the influence of such an approximation. Finally, the following equations hold :

Eyt = [ Ej (Ta)
= = 1 = 1 O - —
V(U] - - {v-((% + z/h)VEhﬂ + Y -(Brin)
l= O ~ & C = S
- ;v-(Ehvuh) — e SE! — % (VE;-VE}) (7b)
2 (= =~ 21 fuwln —
— 2% (VEh‘vI/h) + ;fhEh = —T(Uh,l/h)

As before the differential residual T([?h, Up) is evaluated using fourth order approxima-
tion. A fourth order reconstruction operator is applied to the numerical solutions and
fourth order accurate integrations are performed as required by the finite-volume method.
Concerning this last step and unlike previously, all the volume integrals that are part of
T ((7);1, U) can not be transformed in surface integrals. The integration over control vol-
umes is performed using a local transformation to a generalized coordinate space which
corresponds to a local analytic bilinear description of the volumes. Functions to be inte-
grated are considered as bicubic polynomials expressed in generalized coordinates. This
procedure ensures fourth order integration over control volumes.

In order to compute E}*, equation (7b) is solved, with the same method than for (6b) in
the ISIS solver, along with the previous error equations.

3.4 Conclusion

The method of error estimation introduced in this section presents a number of interesting
features that are detailed in [3]. First and foremost, the error estimator is monogrid so
that the error can be evaluated along with the variable solved. Furthermore, no hypothesis
is imposed neither on the accuracy of the considered solutions nor on the size of the grids
used even though the method is more effective on fine meshes since the differential residuals



involve only the first truncated terms on such grids. Besides, it should be pointed out that
this method does not require any normalization step as it is the case for some other error
estimators [3].

However, the main disadvantage of this methodology comes from the relative complex-
ity of its implementation which requires the use of higher order numerical methods for
computing the differential residuals. Hopefully, error equations can be solved using simi-
lar numerical techniques than for the flow solver. It should be also emphasized that the
equations for the errors solved are linear (but coupled) leading theorically to CPU time
requirement really lower than for solving the primal problem.

This method has yielded fourth order accurate error estimations (p = e = 2 and r = 4)
for laminar flows in [3]. Furthermore, this methodology brings not only estimation of
errors but also estimation of source terms of errors which indicates where and how error
is produced over the computational domain. Using these informations for guiding a h-
adaptive method has shown to be even more efficient (in term of error reduction) than
using the exact error itself.

4 Results

This workshop considered two different test cases from the ERCOFTAC Classic Database :
the 2D model Hill flows (Case 18) and the 2D Backward-Facing Step (Case 30). The
results of numerical evaluations of local and integral quantities of interest and their error
estimations are provided on a separated document. This section is dedicated to present
the characteristic results of the previously presented error estimation method. For the
sake of brevity, only the 2D Backward-Facing Step test case will be considered here for
illustrating the main features of the methodology.

The first section will give some details concerning the performed computations with the
ISIS code for this workshop. The second section intends to use the so-called Richardson
extrapolation method as it is undoubtedly the most widespread methodology for error
estimation in the CFD community. And the last section is relative to the results of the
error equation method.

4.1 Presentation of the computations

All the computations were performed with the ISIS flow solver presented in section 2. A
no-slip boundary condition is prescribed at the walls of all the computational domains.
At the outlet, a Neumann boundary condition is applied on the velocity components and
on  ensuring a zero gradient flux through these boundaries. And a Dirichlet condition
sets the pressure to zero. At the inlet, Dirichlet boundary conditions are applied to all
quantities by the mean of the inlet profiles provided for this workshop, except for the
pressure on which a zero gradient flux is imposed. For each set of grids the discrete profile
on the finest mesh locally fourth order reconstructed is considered as the exact profile so
that the ezact value of variables can be computed anywhere at the inlet boundary (this
is required for the evaluation of the differential residuals).



For all the computations, the algebraic residual of each equation solved is reduced to zero
machine in double precision. Thus, iterative errors are negligible compared to discretiza-
tion errors.

During the post-processing of the data, any interpolation needed is done using fourth
order accurate reconstruction instead of second order one in order not to pollute solutions
with noise of the same order than their accuracies (that are expected to be around order
2 using the ISIS code). And, for computing integral quantities, second order accurate
integrations are performed.

4.2 Richardson extrapolation method

This section is devoted to a short analysis of the Richardson extrapolation method for error
estimation. Concerning the Verification of a particular computation, this methodology is
clearly the most widespread in the open literature. It has been presented, applied and
analysed on different test cases in [3] along with a detailed bibliography.

From this study, it has been shown that this method gives very good results for simple
academic numerical test cases leading to third order accurate error estimation (for second
order accurate solution) in the asymptotic range. However, this method is much more
limited regarding more complex applications since it strictly required a monotonic con-
vergence (and solutions on at least three different grids in the asymptotic range with no
iteration errors on them (!)) that can not always be ensured making the extrapolation
impossible. Once again this feature appeared in the present task of error estimation for
some quantities of interest so that no error estimation can be computed.

Furthermore, even if the right behaviour of the convergence of a quantity is observed, the
error estimation can still be troublesome as pointed out in [1]. The difficulty arises from
the dispersion of values used for the extrapolation. As an example, the re-attachement
point values for the backward-facing step computed on the grids of set B is consid-
ered (see table 1). It is intended here to estimate the discretization error on the re-
attachement point value computed on the finest grid (Grid 7). As it can be observed in
table 2, the error estimation (and the apparent order of convergence) is dependent on
the set of grids selected for the extrapolation even if only the finest ones are considered.

Grid | Nz * Ny | hi/hy | NCell | X(Rea) Grids | p | Err?
1 | 101x101 | 2.40 | 10000 | 6.58962 5-6-7 | 1.50 | 0.21172
2 | 121x121 | 2.00 | 14400 | 6.49893 4-6-7 | 1.26 | 0.25689
3 141x141 | 1.71 | 19600 | 6.41447 4-5-7 | 1.06 | 0.32108
4 | 161x161 | 1.50 | 25600 | 6.34579 3-5-7 1 0.88 | 0.39591
5 | 181x181 | 1.33 | 32400 | 6.28802 1-4-7 1 0.46 | 0.84145
6 201x201 | 1.20 | 40000 | 6.24037 Table 2. Richardson extrapolation for the
7 | 241x241 | 1.00 | 57600 | 617379 | Te-ttachment point

Table 1. Results (Set B) : Re-attachment point ~ # on the solution from Grid 7



In order to overcome this difficulty, Eca et al. have proposed a least square approach
of the Richardson extrapolation method known as the Curve Fit Method (CFM) that
is presented and explained in [1]. This methodology permits the treatment of data with
hightly scattered results. But the CFM is still dependant on the sets of grids used for
computing the fitted curves as it can be observed in table 3 (see also figure 1).

7~
- \\ u ISIS - Spalart/Allmaras - Set B
69F | — ——— CFM : Grids 4 to 7
TE L CFM : Grids 3 to 7
6.8; | CFM : Grids 2 to 7
6.7 ;
5 ids a
66F Grids P Err
S . [ 4to7 | 1.18 | 0.28206
x 65F
ek 3to 7| 0.89 | 0.39259
- 2to7 | 0.71 | 0.51524
6.3
o2k Table 3. Curve Fit Method
F for the re-attachment point
6.1F
6 F 1 1 1 |
0 25000 50000 75000 100000
NCell
Fig. 1. Data and fitted curves relative to table 3 & on the solution from Grid 7

It should be noted that these trends regarding this methodology can even be more im-
pressive for other quantities or other set of grids. Difference of more than two orders
of magnitude have been observed in the estimated errors on a solution. These results
emphasized the need for applying safety factors on the estimated error from Richard-
son extrapolation as proposed by Roache [8]. However, such a practice is not completely
satisfactory in term of precise discretization error estimation.

4.8 Error Equation method

This section presents the results of the error equation method applied to the 2D Backward-
Facing Step (Case 30). Computations have been performed on the seven grids of Set A
which ranged from 10000 cells to 57600 cells (as for Set B, see table 1). Thus, the finest
mesh is not very fine for a 2D turbulent flow. Besides, the quality of the grids of this
set is relatively poor near the step as it can be seen on figure 2 making this test case
quite difficult in term of error estimation. Generally speaking, the quality of the results of
error estimation is difficult to evaluate since no exact solution (and thus no exact error) is
available. We first consider the error norms (L) of the different variables on figure 4 along
with the corresponding norms of the differential residuals (which are the source terms of
error) on figure 3. It can be seen that the convergence of error norms is similar for all the
quantities. Table 4 gives the apparent orders of convergence of the variables as computed
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from the slopes of curves from figure 4. It can be observed that the apparent orders seem
to converge to values near from theorical orders that are located around 2. This result
is thus consistent with what was expected even though it is definitely not a proof of the
efficiency of the present methodology. The slopes for differential residuals have a similar
behaviour as expected from theory (the theorical slope is min(p, r—n) where n is the order
of the considered operator that is always 2 in this study). However, this analysis indicates
that the so-called asymptotic range is not reached for the grids considered in this study.



Grids | plun] | plon] | plpn] | P[(v)n)]
1-2 | 2.981 | 3.142 | 3.141 | 2.806
2-3 | 2.835 | 2.954 | 2.982 | 2.834
3-4 | 3.139 | 3.237 | 3.201 | 3.232
4-5 | 2.648 | 2.725 | 2.792 | 2.815
56 | 2.558 | 2.589 | 2.676 | 2.798
6-7 | 2.262 | 2.244 | 2.369 | 2.550

Table 4. Convergence of apparent orders of convergence

Figures 5 give the error fields computed on the finest grid of the considered set (log;, of
absolute values of errors). As expected, the maximum error is located in the vicinity of
the step. As confirmed from the fields of the source terms, the upper corner of the step is
responsible for the maximum of error production. From there, errors are convected and
diffused inside the computational domain.

We now consider some local and integral flow quantities on figures 6 where the conver-
gences of solutions are plotted along with the ones for extrapolated solutions (numerical
solutions corrected with the evaluated errors). The area between these two curves is the
error zone for each of the variables considered. For the coarsest grid, the error estimation
may be poor.

Finally, it should emphasized that the error estimation has a cost in term of CPU time
requirement. Even though all the equations considered in this methodology are linear,
they are coupled so that some coupling iterations have to be performed using the solving
methodology linked to numerical methods of the ISIS flow solver. Considering that the
cost of a non-linear/coupling iteration for the primal problem is similar to the one of a
coupling iteration for the error problem, the error estimation costs between 6 and 7 time
less than the computation of flow variables.

5 Conclusion

The error equation method has been presented in this paper for turbulent flows. The
main difference from the treatment of laminar flows as detailed in [3] is obviously the
estimation of error for the turbulent viscosity. When deriving an equation for it, the same
methodology was applied than for the Navier-Stokes equations. Actually, an additional
asumption has been made considering that the coefficients of the equation for o are exact.
This approximation has to be evaluated in order to determine its influence in the whole
error problem. However, as pointed out previously, the results of an error estimator are
difficult to quantify without an exact error solution available. Therefore, it is clear that
only the Method of the Manufactured Solution would provide a suitable framework for
such an evaluation. Nevertheless, the first results presented here are encouraging since
they correspond to what can be expected.
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