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ABSTRACT

The computations of the flow over a hill (test case
C-18 of the Ercoftac database) and past a backward
facing step (test case C-30) are reported. The simula-
tions were performed for all the grids supplied for the
Workshop with two turbulence models, namely the
one-equation model by Spalart and Allmaras (1994)
and the two-equation k − ε model by Chang et al.
(1995). The uncertainty was estimated by means of
the least squares root approach (Eca and Hoekstra,
2002, 2003)

INTRODUCTION

The present paper reports the numerical simulations
of the flow over a hill (test case C-18 of the Ercof-
tac database) and past a backward facing step (test
case C-30) proposed for the Workshop. The numerical
model used in the simulations is based on the steady
RANS solver developed at the INSEAN (Di Mascio
et al., 2001), where the convective fluxes in the mo-
mentum equations are evaluated by means of a second
order ENO scheme, whereas diffusive fluxes are dis-
cretized by a centered scheme. Convergence acceler-
ation is achieved by means of local time stepping, an
implicit Euler scheme with approximate factorization
(Beam and Warming, 1978) and an efficient multi-grid
technique (Favini et al., 1996).

Two different turbulence models were applied in
the simulations, i.e. the one-equation model by
Spalart and Allmaras (1994) and the two-equation
k − ε model by Chang et al. (1995).

The simulations were performed with all the grids
supplied for the Workshop; therefore, the solutions
considered in the following are those computed for
the grids ranging from 101 × 101 to 401 × 401 for
the first test case (the flow past a hill) and for from
101 × 101 to 241 × 241 for the second one (the flow
over a backward facing step).

The approach used for the assessment of the nu-
merical uncertainty is the one described in Eca and
Hoekstra (2002, 2003), based on a least squares root
procedure.

The paper is organized as follows: the governing
equations and the numerical algorithms are briefly re-
called in the first section; results for the flow over the
hill are discussed in the second section, followed by
the analysis of the simulations for the flow over the

step in the third section; conclusions are drawn in the
last section.

MATHEMATICAL MODEL

In this section all the equations and the boundary con-
ditions implemented in the numerical model are sum-
marized. The Navier-Stokes equations are reported
first; then the governing equations for the two turbu-
lence models used in the following are shown. A list of
the boundary conditions enforced in the calculations
conclude the section.

Governing equations

The turbulent motion of an incompressible viscous
fluid can be described by the Reynolds averaged
Navier Stokes (RANS) equations

∂ uj
∂xj

= 0

∂ ui
∂t

+
∂ ujui
∂xj

+
∂ p

∂xi
=

∂ τij
∂xj

i = 1, 2, 3.

(1)
A reference length l and velocity U∞ have been

chosen to make the equations non–dimensional. In
the previous equations, ui is the i–th Cartesian
component of the velocity vector, p the pressure,
τij = νt(ui,j + uj,i) the stress tensor, νt = 1/Re + νT

the global kinematic viscosity, Re = U∞l/ν the
Reynolds number, ν the kinematic viscosity and νT

the turbulent viscosity.

Turbulence models

The Spalart–Allmaras one–equation model

In this model (Spalart and Allmaras, 1994), the eddy
viscosity νT is computed by means of an intermediate
variable ν̃ and through relation:

νT = ν̃fv1(χ); χ =
ν̃

ν
; fv1(χ) =

χ3

χ3 + C3
v1

(2)

The variable ν̃ is the solution of a partial differential
equation that reads

Dν̃

Dt
= cb1 [1− ft2] S̃ν̃

−
[
cw1fw −

cb1
k2
ft2

] [ ν̃
d

]2

(3)
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+ ft1∆U

+
1
σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
,

where S̃ = S + [ν̃/(k2d2)]fv2, S is the magnitude
of the vorticity vector, d the distance from the wall,
ft1, ft2, fw, fv2 are functions that depends only on χ
and the distance from the wall; finally, the c-s and k
are constants. The first two terms in the right hand
side represent production and destruction of ν̃, re-
spectively; the third one is the so-called ”trip” term,
that allows to specify the laminar-turbulent transition
point location (in the results shown in the next sec-
tion, this term was always turned off); the last part
is a dissipation term, that contains also a non con-
servative portion cb2(∇ν̃)2 which is responsible, to-
gether with the non-linear part of the diffusion term
∇ · (ν̃∇ν̃), for the advection of a turbulent front into
non-turbulent regions.

Chang–Hsieh–Chen two–equation model

This is a two-equation k−ε model proposed by Chang
et al. (1995). The eddy viscosity is given by

νT = Cµfµ
k2

ε
(4)

where Cµ = 0.09 and

fµ = (1− e−0.0215Rk)2(1 +
31.66

R
5/4
T

) (5)

with Rk =
√
kd/ν and RT = k2/(εν).

The turbulent kinetic energy k and the dissipa-
tion rate ε are the solution of the following system of
equations

Dk

Dt
= ∇ ·

[(
ν +

νT

σk

)
∇k
]

+ φT − ε (6)

Dε

Dt
= ∇ ·

[(
ν +

νT

σε

)
∇ε
]

+ C1f1φT
ε

k
− C2f2

ε2

k
(7)

where σk = 1, σε = 1.3, C1 = 1.44, C2 = 1.92 and φT
is

φT = νT (ui,j + uj,i)ui,j

whereas the functions f1 and f2 are given by

f1 = 1 (8)

f2 = (1− 0.01e−R
2
T )(1− 0.0631e−R

2
k) (9)

Boundary conditions

The conditions enforced at the boundary are:

• Solid wall: velocity, turbulent kinetic energy
and turbulent viscosity are set to zero, together
with the normal derivative of ε

• Inflow: velocity, turbulent kinetic energy and
turbulent viscosity are set to the prescribed val-
ues, whereas the normal derivative of the dissi-
pation rate is set to zero; pressure is extrapo-
lated from inner values.

• Outflow: velocity, turbulent kinetic energy, dis-
sipation rate and turbulent viscosity are extrap-
olated from inner values, whereas pressure is set
to zero.

NUMERICAL MODEL

Spatial discretization

For the numerical solution of the equations (1), the
fluid domain D is partitioned into Nl structured
blocks Dl, each subdivided into Ni×Nj×Nk disjoint
hexahedrons Dl

ijk such that ∪Dl
ijk = Dl. Conserva-

tion laws are then applied to each finite volume:

6∑
s=1

∫
Ss

U · n dS = 0

∂

∂t

∫
Vijk

U dV +
6∑
s=1

∫
Ss

(Fc −Fd) · n dS = 0

(10)
where Ss is the s-th face of the finite volume Dijk,
whose measure is Vijk.

In order to obtain second order accuracy in space,
convective and viscous fluxes in the momentum equa-
tions, as well as surface integral of the velocity in the
continuity equation, are computed as:∫

Ss
U · ndS = ulnl|0 As +O(∆2)∫

Ss
Fc · ndS = Fcs|0 As +O(∆2)∫

Ss
Fd · ndS = Fds

∣∣
0
As +O(∆2)

(11)

where the subscript 0 means that the quantities are
computed at the face center, As is the measure of Ss,
∆ is the diameter of Ss and:

Fcs =

 u1ulnl + pn1

u2ulnl + pn2

u3ulnl + pn3

 Fds =

 τ1lnl
τ2lnl
τ3lnl

 (12)

The stress tensor at the cell interface is computed as:

τlm|i+ 1
2 ,j,k

= νi+ 1
2 ,j,k

(
∂um
∂xl

+
∂ul
∂xm

)
i+ 1

2 ,j,k

(13)

The derivatives of the velocity vector are obtained by
means of a finite volume approximation:

∂um
∂xl

∣∣∣∣
i+ 1

2 ,j,k

=
1

Vi+ 1
2 ,j,k

∫
Σ
i+ 1

2 ,j,k

umnldS +O(∆2) (14)
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where the integral is extended to the volume Vi+ 1
2 ,j,k

(whose boundary is Σi+ 1
2 ,j,k

) that includes the cell
face Si+ 1

2 ,j,k
and is overlapped to half the cell (i, j, k)

and half the cell (i+1, j, k). In equation (13), νi+ 1
2 ,j,k

denotes the sum of the kinematic and turbulent vis-
cosity at the cell face.

The computation of the convective fluxes Fcs and
the surface integral of the velocity in the continuity
equation requires the evaluation of pressure and ve-
locity at the face center. To this aim, a second order
ENO-type scheme has been adopted (Harten et al.,
1987). These schemes were originally developed for
compressible fluid flows, on the basis of the hyper-
bolic nature of the Eulerian part of the Navier-Stokes
equations. The extension to incompressible flows is
possible when working in pseudo-compressible formu-
lation.

The building block of this kind of algorithms is the
Godunov scheme (1959), in which the flux vector at
cell interface is computed as the solution of a Riemann
problem, whose right and left states are given by the
values of the numerical solution at two neighboring
cell centers. For example, at the cell face i+ 1

2 , j, k:

Fci+ 1
2 ,j,k

= Fc(ql,qr) = Fc(qi,j,k,qi+1,j,k) (15)

q being the vector of the state variables, which,
for pseudo–compressible flows, take the form: q =
(p, u1, u2, u3)T . This scheme yields oscillation-free
discrete solutions, also when the exact solutions are
discontinuous. However it can be shown that the re-
sulting scheme is only first order accurate. Higher
order accurate (up to any finite order) oscillation free
solutions can be obtained by modifying the evaluation
of the right and left states of the Riemann problem
as explained in Harten et al. (1987). In the particular
case of second order accuracy, it can be shown that
left and right states have to be evaluated as:

ql = qi,j,k +
1
2

minmod(∆i−1/2,∆i+1/2)

qr = qi+1,j,k −1
2

minmod(∆i+1/2,∆i+3/2)

(16)

where ∆i+1/2 = qi+1,j,k−qi,j,k and minmod is a func-
tion that is applied to each vector component:

minmod(x, y) =
{

0 if xy ≤ 0
sign(x) min(|x|, |y|) if xy > 0

(17)
The evaluation of the convective flux vector requires
the solution of a Riemann problem at each cell in-
terface. In order to simplify the algorithm, a second
order accurate solution was used in place of the exact
one, which must be computed iteratively, given the
nonlinearity of the problem; details of the algorithm
can be found in Di Mascio et al. (2001), where it is
also proved that the scheme is formally second order
accurate.

Temporal integration

Being the steady state solution the goal of the simu-
lation, the RANS equations are rewritten in pseudo-
compressible form (Chorin, 1967) in order to have an
evolution equation for the pressure. The semi-discrete
system of equations can be rewritten in vector form
as:

∂ q
∂t

∣∣∣∣
ijk

+Rijk = 0 (18)

with

q =
1
Vijk

∫
Vijk

(p/β, u, v, w)T dV (19)

and Rijk being the flux balance on the current cell; β
is the pseudo compressibility factor.

The integration with respect to time is carried out
by means of an implicit Euler scheme, i.e.

qm+1
ijk − qmijk

∆τ
+Rm+1

ijk = 0 (20)

where the superscript m denotes the iteration level
and ∆τ is the (local) time step. The previous equa-
tion is then solved with respect to qm+1

ijk by a scheme
similar to the one proposed in Beam and Warming
(1978) for compressible flows, where the equation is
rewritten in “delta” form

δqmijk + ∆τ
∂Rijk
∂qrst

(δqmrst) = −∆τRmijk

qm+1
ijk = qmijk + δqmijk

(21)

with δqmijk = qm+1
ijk − qmijk, and the operator on the

left hand side of the previous equation is solved by an
approximate factorization technique. The resulting
scheme is unconditionally stable to the linear anal-
ysis. Local time step ∆τijk and a multi-grid tech-
nique (Brandt, 1984; Favini et al., 1996) have been
used in order to improve convergence rate.

NUMERICAL RESULTS

General remarks

In what follows, the computations made with the
Spalart–Allmaras model will be referred to as SA,
whereas those in which the Chang–Hsien–Chen model
was adopted with CH.

The numerical solutions were computed for all the
grids furnished for the Workshop, by using both tur-
bulence models. Parameters and procedures adopted
are briefly summarized here.

Full Multi-grid Iteration

For all test cases, the solution was computed using
a Full Approximation Storage - Full Multi-grid algo-
rithm, i.e. for each grid

3



• all coarser grid levels were generated by remov-
ing every other grid point from the previous
finer level;

• the solution is computed on the coarsest level
first;

• for each finer sub-level, up to the finest one:

– the first guess of the solution is obtained by
interpolation from the next coarser level;

– all coarser levels are used in a V-cycle
multi-grid iteration;

– the solution is iterated until the conver-
gence criteria is fulfilled.

In all the computations reported, three smoothing
steps were used on each sub-levels in the V-Cycle.
The pseudo-compressibility factor was always set to
1, and the (local) time step was chosen to be 25 times
larger than the maximum admissible time step for the
corresponding explicit Euler scheme. The CPU time
required on a Pentium III (1GHz) processor for the
simulation with SA for the finest grids was about 1
hour for the simulation of the flow over the step and
about 2 hours for the flow over the hill; it was up to
three times larger with CH. No attempt was done to
optimize the convergence rate.
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Figure 1: Step: Grid 201× 201 ; Residual for SA (left) and CH (right)
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Figure 2: Step: Grid 201× 201 ; total X force for SA (left) and CH (right)
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Convergence Criteria

The iteration was stopped when all normalized resid-
uals in L2 norm were smaller than 10−6 when using
the Spalart–Allmaras model (SA) and smaller than
10−5 with the Chang–Hsien–Chen model (CH). These
values were chosen in order to have the iteration un-
certainty always smaller than 0.1% for all variables in
each simulation. Examples of convergence history are
reported in fig.1-2 in terms of both residuals and total
non-dimensional x-force (upper wall + bottom wall).
The plots are drawn for both turbulence models.

Uncertainty assessment

The least squares root approach (Eca and Hoekstra,
2002, 2003) was used for uncertainty estimation for
all the test cases computed. All the grids available in
each grid set were considered to this end.

Test Case: Flow over a hill

The Reynolds number in the first test case is 60000,
based on the hill height. The grids used range from
101×101 to 401×401. Grid shapes are shown in fig.3.

The solutions with SA and CH on both grid sets
for the finest grid are reported in fig.4-7 in terms of
pressure, axial velocity, eddy viscosity and stream-
lines. As it can be seen, the two solutions with the
same turbulence model but different grid shape are
very similar, the difference being of the same order of
magnitude as the estimated uncertainty; nevertheless,
there are remarkable differences between the predic-
tions when changing the turbulence model. In par-
ticular, the recirculation bubble predicted with SA is
much bigger than the one with CH.

The velocity profiles computed with SA and with
all the grids in set A ranging from 101 × 101 to
401× 401 are reported in fig.8
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Figure 3: Hill: grid set A (left) and grid set B (right)
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The predicted values of friction and pressure resis-
tance are reported in table 1 for the top wall and in
table 2 for the bottom, whereas the location of sepa-
ration and re–attachment points can be found in table
3. It can be seen that the values of resistance on the
top are in good agreement which each other on all
grids and with both turbulence models. On the bot-
tom, instead, although the values predicted by each
turbulence model overlap within the estimated uncer-
tainty level on both grid sets, they differ significantly
when comparing the solutions obtained with the two

models. This is probably due to the different predic-
tion of the separation bubble, as it can be deduced
from table 3.

The uncertainty level was found to be of the same
order of magnitude for both models and both grid
sets; the same can be said about the observed con-
verged order for the global quantities, which was esti-
mated to range from 1.7 to 2.3 for both grid sets and
models for resistance components, and from 1.4 to 1.9
for the location of the separation and re-attachment
points.

Rf top Predicted Uncertainty
SA - Set A 0.555× 10−1 0.50× 10−3 (0.9%)
SA - Set B 0.555× 10−1 0.34× 10−3 (0.6%)
CH - Set A 0.575× 10−1 0.86× 10−3 (1.5%)
CH - Set B 0.570× 10−1 0.46× 10−3 (0.8%)

Table 1: Hill: Friction resistance on the top wall. Results for SA and CH for all grid sets

Rf bottom Predicted Uncertainty
SA - Set A 0.232× 10−1 0.50× 10−3 (2.2%)
SA - Set B 0.228× 10−1 0.84× 10−3 (3.7%)
CH - Set A 0.580× 10−1 0.75× 10−3 (1.3%)
CH - Set B 0.571× 10−1 0.40× 10−3 (0.7%)

Rp bottom Predicted Uncertainty
SA - Set A 0.194 0.20× 10−3 (0.1%)
SA - Set B 0.194 0.38× 10−3 (0.2%)
CH - Set A 0.163 0.52× 10−2 (3.2%)
CH - Set B 0.160 0.24× 10−2 (1.5%)

Table 2: Hill: Friction resistance and pressure resistance on the bottom wall. Results for SA and CH for all
grid sets

Xsep Predicted Uncertainty
SA - Set A 0.232× 10−1 0.50× 10−3 (2.2%)
SA - Set B 0.228× 10−1 0.84× 10−3 (3.7%)
CH - Set A 0.580× 10−1 0.75× 10−3 (1.3%)
CH - Set B 0.571× 10−1 0.40× 10−3 (0.7%)

Xreatt Predicted Uncertainty
SA - Set A 8.30 0.2 (2.4%)
SA - Set B 8.45 0.57 (7.0%)
CH - Set A 5.09 0.07 (1.4%)
CH - Set B 5.09 0.6 (12.%)

Table 3: Hill: Separation and re-attachment points. Results for SA and CH for all grid sets
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Test Case: Flow over a backward facing
step

The Reynolds number for this test case is 50000
based on the step height. The grids used range from
101×101 to 241×241. Grid shapes are shown in fig.9.

The computed solutions are reported in fig.10, 11,
12 and 13 in terms of pressure, eddy viscosity, stream-
lines and velocity profiles respectively. It can be ob-
served that the dependence of the solution on the tur-
bulence model is not as strong as in the previous test
case, probably because the separation point here is
determined by a geometrical factor rather than by
boundary layer separation.

The predicted values of the friction and pressure
resistance are summarized in table 4 for the top wall
and in table 5 for the bottom, whereas the location of
the re–attachment point is shown in table 6. Again, it
can be seen that the values of resistance on the top are
in reasonable agreement with each other on all grids
and with both turbulence models, even if the differ-
ence between the predictions with the two models is
higher than for the flow over the hill. The overlapping
of data within the uncertainty level for the computa-
tions with the same model is observed also for this

flow. As before, the friction resistance predicted with
the k − ε model is much larger than the one com-
puted with the Spalart and Allmaras one-equation
model. Also the prediction of the re–attachment point
is rather different, the bubble computed with SA be-
ing about 15% longer than the one computed with
CH.

As for the previous test case, the uncertainty level
was found to be of the same order of magnitude for
both models and the three grid sets; moreover, the un-
certainty for the prediction of the pressure resistance
was found to be rather high, in particular for the sim-
ulations using grid set C. The observed convergence
order for the global quantities was found to be lower
that for the flow over the hill, its values ranging from
0.7 to 1.7 for all quantities; in details, the lowest “ac-
tual” convergence order was observed for grid sets B
and C, with values ranging from 0.7 to 1.2, whereas
on grid set A it ranges from 1.0 to 1.7.

With regard to the local flow quantities, the un-
certainty was rather large in percent values, although
not too large if computed with respect to the refer-
ence quantities. In addition, grid convergence was not
always observed, especially on grid sets B and C.

Rf top Predicted Uncertainty
SA - set A 0.476× 10−1 0.75× 10−3 (1.6%)
SA - set B 0.495× 10−1 0.12× 10−2 (2.4%)
SA - set C 0.477× 10−1 0.11× 10−2 (2.3%)
CH - set A 0.550× 10−1 0.14× 10−2 (2.5%)
CH - set B 0.535× 10−1 0.14× 10−2 (2.6%)
CH - set C 0.546× 10−1 0.14× 10−2 (2.6%)

Table 4: Step: Friction resistance on the top wall. Results for SA and CH for all grid sets

Rf bottom Predicted Uncertainty
SA - set A 0.259× 10−1 0.31× 10−3 (1.2%)
SA - set B 0.269× 10−1 0.80× 10−3 (2.7%)
SA - set C 0.265× 10−1 0.45× 10−3 (1.7%)
CH - set A 0.515× 10−1 0.14× 10−2 (2.8%)
CH - set B 0.500× 10−1 0.15× 10−2 (3.0%)
CH - set C 0.515× 10−1 0.14× 10−2 (2.7%)

Rp bottom Predicted Uncertainty
SA - set A 0.107 0.97× 10−2 ( 9%)
SA - set B 0.109 0.14× 10−1 (13%)
SA - set C 0.099 0.17× 10−1 (17%)
CH - set A 0.106 0.13× 10−1 (12%)
CH - set B 0.108 0.15× 10−1 (14%)
CH - set C 0.098 0.19× 10−1 (19%)

Table 5: Step: Friction resistance and pressure resistance on the bottom wall. Results for SA and CH for all
grid sets

Xreatt Predicted Uncertainty
SA - set A 6.04 0.20 (3.5%)
SA - set B 5.80 0.21 (3.6%)
SA - set C 5.92 0.23 (3.8%)

Xreatt Predicted Uncertainty
CH - set A 4.77 0.63 ( 13%)
CH - set B 4.77 0.50 ( 11%)
CH - set C 4.53 0.43 (9.5%)

Table 6: Step: re-attachment point. Results for SA and CH for all grid sets
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CONCLUSIONS

The numerical simulations of the flow over a hill (test
case C-18 of the Ercoftac database) and past a back-
ward facing step (test case C-30) were reported. The
numerical scheme adopted is a second order E.N.O.-
type scheme for the Eulerian part of the Navier-Stokes
equation and a second order centered scheme for the
viscous part. The discrete solution was computed by
means of an implicit scheme with approximate fac-
torization, coupled with local time step and a Full
Multi Grid–Full Approximation Storage (FMG-FAS)
approach.

The numerical simulation were performed with all
the grids supplied for the Workshop and with two
different turbulence models, namely the one-equation
model by Spalart and Allmaras (1994) and the two-
equation k − ε model by Chang et al. (1995).

The approach used for the assessment of the nu-
merical uncertainty is the one described in Eca and
Hoekstra (2002, 2003), based on a least squares root
procedure.

It was observed that the solutions significantly de-
pend on the turbulence model, whereas they overlap
within the uncertainty range with respect to grid size
and shape.

The numerical uncertainty was comparable for all
grid shapes and models, the highest values having
been observed in the prediction of the pressure re-
sistance and for local quantities for the flow over a
backward facing step. Grid convergence was not al-
ways obtained for the prediction of some local quan-
tities in the second test case, especially for grid set B
and C.
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