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Test cases description
The two test cases are taken from the ERCOFTAC Classic Database, [1]. The computational

domains of the two selected test cases are very similar: the inlet and outlet boundaries are
vertical lines with x = constant, the top boundary is a flat wall with y = constant and the bottom
boundary is also a wall, but with a more difficult shape.

1 Geometry of the test cases and flow conditions

1.1 Flow over a hill, C-18

The geometry of the test case is illustrated in figure (1), which is taken from [1].

Figure 1: Geometry of the flow over a 2-D Hill.

The computational domain is bounded by two solid walls and the inlet and outlet boundaries,
which means that there are only two boundaries with exact boundary conditions. The Reynolds
number based on the hill height, h = 28mm, and on the mean centreline velocity at the inlet,
Uo = 2.147m/s, is Rn = 60000.



2 Workshop on CFD Uncertainty Analysis, Lisbon, October 2004

The inlet boundary is an x = constant line located at x = −300mm, i.e. x ' −10.7h and
the outlet boundary is an x = constant line at x = 800mm (x ' 28.6h). The maximum distance
between the two walls is 170mm, i.e. approximately 6h.

1.2 Flow over a backward facing step, C-30

The geometry of the experimental setup of this flow is depicted in figure (2), which is taken
from [1].

Figure 2: Geometry of the flow over a backward facing step.

In the present grid sets, the angle of the top wall is 0 degrees. The velocity of the uniform
incoming flow, Ure f , is 44.2 m/s and the step height, h, is 1.27 cm. The inlet is an x = constant
section located 4 step heights upstream of the step and the outlet is an x = constant section 40
step heights downstream of the step. The Reynolds number based on Ure f and h is 50000.
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2 Grid Sets

In both cases, all the grid sets include single block structured grids. One family of grid lines
connects the inlet and outlet boundaries, whereas the other family of grid lines runs between
the top and bottom walls.

This choice may not lead to the optimal grid, but the main objective of the present grids is
to allow its use with the maximum number of flow solvers possible, guaranteing that we have
sets of geometrical similar grids. To achieve this result a basis grid is generated for each test
case. Each grid is then obtained with a 2-D cubic spline interpolation performed on the basis
grid. The desired grid line distance is obtained with 1-D coordinate transformations tuned at
the inlet and bottom boundaries using the stretching functions proposed by Vinokur in [3].

The basis grids are generated with a package developed within the IST/MARIN cooperation,
[2], which includes hyperbolic, elliptical and algebraic techniques.

2.1 Flow over a hill, C-18

The basis grid for the flow over the hill includes 595×201 grid nodes.
Figure (3) illustrates the basis grid. The view of the complete grid includes a reduced num-

ber of grid lines, whereas the detailed view in the vicinity of the hill includes all the grid lines.

Deviations from Interior Boundaries
Orthogonality Nodes Bottom wall Top wall Inlet Outlet
Maximum (o) 0.26 1.69 0.01 0.00 0.00
Mean (o) 0.00 0.11 0.00 0.00 0.00

Table 1: Deviations from orthogonality of the basis grid for the flow over a hill.

The deviations from orthogonality are presented in table (1). In the interior grid nodes,
the derivatives of the grid coordinates are approximated by central-differences. At the bound-
aries, the derivatives with respect to the curvilinear coordinate perpendicular to the boundary
are approximated with one-sided first-order differences, whereas the derivative with respect to
the curvilinear coordinate that changes along the boundary are also approximated by central-
differences. The results of table (1) show that the grid is nearly-orthogonal.
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Figure 3: Basis grid for the flow over a 2-D Hill.

2.1.1 Grid set A

Grid set A is composed of 11 geometrically similar grids that preserve the grid line pattern
of the original basis grid. The grids have an equal number of grid nodes in both directions,
Nξ = Nη . The near-wall grid line distances were selected to enable a proper application of the

no-slip condition. The typical values of the maximum y+ at the first grid node away from the
walls, (y+

2 )max, are given in table (2).
Figure (4) presents a view of the 101×101 grid of set A close to the hill.
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Typical Nξ or Nη
(y+

2 )max 101 121 141 161 181 201 241 281 321 361 401
Top 0.77 0.64 0.55 0.48 0.43 0.39 0.32 0.28 0.24 0.21 0.19
Bottom 0.71 0.59 0.51 0.44 0.39 0.36 0.30 0.26 0.22 0.20 0.18

Table 2: Maximum value of y+ at the first grid node away from the walls in grid set A. Flow
over a hill.

Figure 4: 101×101 grid of set A for the flow over a 2-D Hill.

2.1.2 Grid set B

The grids of set B are straightforward to generate. In this set, the η lines have a constant
x coordinate, which is taken from the boundary point distribution at the bottom boundary in
set A. The grid node distribution along these normal lines is defined by the stretching function
applied at the inlet boundary of set A. Therefore, the grids still have smooth ξ lines, but we no
longer have nearly-orthogonal grids.

In the grids of set B, the mean deviation from orthogonality in the interior is 5.4o and the
maximum deviation is 40.5o. The grids are orthogonal at the inlet, outlet and top boundaries,
but there is a significant deviation from orthogonality at the bottom wall, with a maximum
deviation from orthogonality of 40.5o in the hill region.

The values of (y+
2 )max in this grid set are given in table (5.3).
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Typical Nξ or Nη
(y+

2 )max 101 121 141 161 181 201 241 281 321 361 401
Top 0.78 0.65 0.55 0.49 0.43 0.39 0.32 0.28 0.24 0.22 0.19
Bottom 1.34 1.12 0.96 0.84 0.75 0.67 0.56 0.48 0.42 0.38 0.34

Table 3: Maximum value of y+ at the first grid node away from the walls in grid set B. Flow
over a hill.

The 101×101 grid is illustrated in figure (5).

Figure 5: 101×101 grid of set B for the flow over a 2-D Hill.

2.2 Flow over a backward facing step, C-30

The choice of a single block, structured grid for the present computational domain makes
the grid generation a challenging task. The two corners of the bottom wall are not easy to handle
in such a grid. It is obvious that it is possible to generate much simpler grids using different
topologies than the present choice. A simple example is a multiblock Cartesian grid. However,
one of the goals of the present exercise is to test the reliability of the uncertainty estimates in
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difficult situations and so the single block structured grid is a really demanding test case for any
flow solver.

The basis grid has 321× 321 grid nodes and we have ensured that the two corners of the
step are coincident with grid nodes.

Figure 6: Basis grid for the flow over a 2-D backward facing step.

Figure (6) illustrates the basis grid. The view of the complete grid includes a reduced num-
ber of grid lines, whereas the detailed views in the vicinity of the step include all the grid lines.
The consequences of the two corners of the bottom boundary in the interior grid line spacing
are perfectly visible in the grid plots.

Obviously, the deviations from orthogonality are much larger than in the previous test case.
Nevertheless, the values obtained are still acceptable and most of the times common practice in
complex configurations. Table (4) presents the mean and maximum deviations from orthogo-
nality of the basis grid in the interior grid nodes and at the four boundaries of the computational
domain. These values were computed with the same discretization schemes applied in the pre-
vious test case.
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Deviations from Interior Boundaries
Orthogonality Nodes Bottom wall Top wall Inlet Outlet
Maximum (o) 43.3 31.6 0.00 0.78 0.49
Mean (o) 14.6 0.52 0.00 0.28 0.17

Table 4: Deviations from orthogonality of the basis grid for the flow over a backward facing
step.

2.2.1 Grid set A

This grid set is obtained with 2-D cubic splines interpolations in the basis grid, which are
similar to the technique applied in grid set A of the flow over the hill. In this case, the interpola-
tion is performed in three sub-domains to take into account the discontinuities of the coordinates
derivatives at the two corners of the bottom wall. In this grid set, there is always a grid node at
the two corners of the step.

The boundary node distributions at the inlet boundary and at the bottom wall are specified
using the stretching functions proposed by Vinokur, [3]. At the bottom wall, we have adopted
an equidistant node distribution along the vertical wall of the step. In each grid, one fifth of the
grid nodes are located between the inlet and the top corner of the step. Another fifth is used
along the vertical line of the step and the remaining three fifths are placed between the bottom
corner and the outlet of the computational domain. At the inlet boundary, a two-sided stretching
function is applied to obtain the required near-wall spacing.

7 geometrically similar grids have been generated with the values of (y+
2 )max given in table

(5).

Typical Nξ or Nη
(y+

2 )max 101 121 141 161 181 201 241
Top 0.89 0.71 0.60 0.52 0.46 0.41 0.34
Bottom 1.01 0.82 0.68 0.58 0.55 0.44 0.36

Table 5: Maximum value of y+ at the first grid node away from the walls in grid set A. Flow
over a backward facing step.

Figure (7) presents three views of the 101×101 grid.
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Figure 7: 101×101 grid of set A for the flow over a backward facing step.

2.2.2 Grid set B

The 7 grids of set B have the same boundary point distribution of the corresponding grid of
set A. However, in this case the interior grid lines are obtained simply by connecting the grid
nodes of the top and bottom walls with straight lines. The two-sided stretching function at the
inlet is applied to all the η lines of each grid to obtain the desired interior grid line spacing.

Deviations from Interior Boundaries
Orthogonality Nodes Bottom wall Top wall Inlet Outlet
Maximum (o) 63.3 63.3 29.1 0.64 0.00
Mean (o) 25.6 29.8 23.5 2.74 0.00

Table 6: Deviations from orthogonality of the grids of set B for the flow over a backward facing
step.

Table (6) presents the mean and maximum deviations from orthogonality of the grids of set
B. The mean and maximum deviations from orthogonality are clearly larger than in the basis
grid. Furthermore, at the two solid walls the grid lines are clearly non-orthogonal.

Typical Nξ or Nη
(y+

2 )max 101 121 141 161 181 201 241
Top 0.93 0.75 0.62 0.54 0.47 0.42 0.34
Bottom 1.15 0.93 0.78 0.67 0.58 0.52 0.42

Table 7: Maximum value of y+ at the first grid node away from the walls in grid set B. Flow
over a backward facing step.
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Figure 8: 101×101 grid of set B for the flow over a backward facing step.

The typical values of (y+
2 )max are presented in table (7). Figure (8) illustrates the 101×101

grid of set B.

2.2.3 Grid set C

In practical applications, it may be impossible to guarantee the existence of a grid node at
every corner of a complex configuration. Therefore, we have generated a third grid set which
does not have grid nodes coincident with the two corners of the step. The grids are generated in
a similar way of grid set A and so we have grid properties which are not too different from the
ones of the basis grid.

Figure 9: 101×101 grid of set C for the flow over a backward facing step.

The stretching function applied in the η direction is the same as in set A and so the values
of (y+

2 )max given in table (5) are very similar to the ones obtained in grid set C.
Figure (9) presents three views of the 101×101 grid of set C.
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3 Inlet Profiles

In both test cases there are no exact boundary conditions available at the inlet boundary.
Therefore, some approximations have to be made for the specification of the inlet boundary
conditions.

3.1 U1 Velocity component

The Cartesian velocity component in the x direction, U 1, is defined with the help of analyt-
ical profiles. The present options were tuned to obtain a good agreement with the experimental
results. The U1 profile in the vicinity of the two walls is assumed to be identical and so one
only needs to specified it for half the distance between the two walls.

3.1.1 Flow over a hill

In this case, the mean centreline velocity is designated by Uo and half the distance between
the two walls by H2. The inlet U1 profile is defined with a multi-layer approach:

• For y+ < 100:

U+ =
1
κ

ln
(

1+0.4y+
n

)

+7.8



1− e
−

y+
n

11 −
y+

n

11
e
−

y+
n
3



 , (1)

where

U+ =
U1

uτ
and κ = 0.41 .

Equation (1) is given in [4] and it is based on a compilation of Direct Numerical Simulation
and Large Eddy-Simulation data. uτ was set equal to the experimental value uτ = 0.079m/s.

• For y+ ≥ 100 and y < 0.6H2:

U1

Uo
=

(

y
H2

)γ
, (2)

where the exponent γ is obtained from the continuity of equations (1) and (2) at y+ = 100.

• For y ≥ 0.6H2:
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Figure 10: Inlet U1 profile for the steady, incompressible, 2-D flow over a hill.

The velocity profile is obtained with an Hermite interpolation. The derivative with respect
to y at 0.6H2 is obtained from equation (2) and at H2 is set equal to zero.

Figure (10) presents the inlet velocity profile and the experimental results, [5]. The profile
obtained from equation (1) is also plotted in figure (10).

3.1.2 Backward facing step

In the experimental setup of this flow there is a uniform flow at the inlet with boundary-layer
type profiles close to the two walls.

The inlet conditions are given in [6] four step-heights upstream of the step, which has
a height, h, of 1.27cm. At this location, the boundary-layer thickness, δ , is 1.9cm and the
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Reynolds number based on the inlet velocity, Ure f , and on the momentum thickness, θ , is

Reθ =
Ure f θ

ν
= 5000.

The boundary-layer region is represented with a similar strategy to the one used in the flow
over a hill. The U1 profile is specified with a three layer approach.

• For y+ < 25:

A standard boundary-layer profile described in [7], which is defined from the momentum
thickness and the skin friction coefficient, C f . θ and C f were selected to obtain the best agree-
ment with the experimental data.

θ
h

= 0.15 and C f = 0.003 .

With these choices of θ and C f one obtains δ = 1.99h at the inlet boundary.

• For y+ ≥ 25 and y < 0.3δ :

U1

Ure f
=

( y
δ

)γ
, (3)

where the exponent γ is obtained from the continuity of the U 1 profile at y+ = 25.

• For y ≥ 0.3δ :

The velocity profile is obtained with an Hermite interpolation. The derivative with respect
to y at 0.3δ is obtained from the power-law profile and at δ is set equal to zero.

Figure (11) presents the inlet velocity profile and the experimental results, [6]. The standard
boundary-layer profile suggested in [7] is also plotted in figure (11).

3.2 Turbulent quantities

The selected inlet boundary conditions lead always to the same eddy-viscosity profile, in-
dependently of the turbulence model chosen. k and ε approximate inlet profiles are defined and
the νt profile is obtained using Chien’s k− ε model, [8]. The remaining variables, (ν̃)t , ν̃ and
ω are derived from the others.



14 Workshop on CFD Uncertainty Analysis, Lisbon, October 2004

U1/Uref

y/
h

0 0.25 0.5 0.75 11

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Inlet Profile
Reference [7]
Experimental, [6]

Figure 11: Inlet U1 profile for the steady, incompressible, 2-D flow over a backward facing step.

3.2.1 Flow over a hill

The inlet boundary k and ε profiles are specified with equations given in [4]. The k profile
is given by

k+ = 0.07(y+)2e−
y+

8 +4.5

(

1− e−
y+

20

)

1
4y+

Reuτ
+1

, (4)

where

k+ =
k
u2

τ
and Reuτ =

uτh
ν

.

h is the hill height.
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ε is obtained from

ε+ =
1

0.41((y+)4 +154)
0.25 , (5)

with
ε+ =

εν
u4

τ
.

3.2.2 Backward facing step

In the backward facing step k has a constant value in the uniform flow region and a multi-
layer profile in the near-wall region.

In the uniform flow region, the turbulent quantities are selected to obtain an eddy-viscosity
equal to 0.01ν . Of the three turbulent quantities, k, ε and ω , the value of ω is known to be
the most sensitive. Therefore, k and ε are obtained as a consequence of the selected values of
eddy-viscosity and ω .

In the boundary-layer region the multi-layer profile is given by:

k+ = 0.05(y+
n )2 ⇐ y+

n < 5
k+ = 1.25+0.325(y+

n −5) ⇐ 5 ≤ y+
n < 15

k+ = 4.5−3.6η2 +2.4η3 with η =
y+

n −15
45 ⇐ 15 ≤ y+

n < 60
k+ = 3.3 ⇐ 60 ≤ y+

n and yn < 0.15δ

(6)

A cubic interpolation is applied between yn = 0.15δ and the edge of the boundary layer
using zero derivatives at yn = 0.15δ and yn = δ .

For y ≥ δ ,

k =
0.1
Rn

U2
re f ,

where Rn is the Reynolds number, given by Rn =
Ure f h

ν .
ε is defined with different equations for the near-wall region and for the outer region of the

boundary-layer. For yn < 0.15δ , ε is obtained from

ε =
k1.5

l
, (7)

with
l = 2.543687yn

(

1− e−Rk/5.087374
)

(8)

and

Rk =

√
kl

ν
. (9)
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In the outer region ε is obtained with an Hermite interpolation for the region 0.15δ < yn < δ .
The derivative at y = δ is set equal to zero and the derivative at 0.15δ is obtained from the linear
variation between 0.15δ and δ .

For y ≥ δ ,

ε =
0.09
Rn

U3
re f

h
.

In both cases, ε̃ for Chien’s model is obtained from

ε̃ = max

(

0,ε −
2νk
y2

n

)

.

The νt profile is computed with Chien’s k− ε model. (ν̃)t and ν̃ are obtained solving the
non-linear problems defined by the definition equation of the eddy-viscosity in the one-equation
models of Spalart & Allmaras, [9], and [10].

The ω profile is specified with the help of the k and νt profiles with the exception of the
near-wall viscous sub-layer.

ω = 6ν
0.075y2

n
y+

n < 2.5

ω = k
νt

2.5 ≤ y+
n and 0.15δ

ω = 10
Ure f

h yn > δ

(10)
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